Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(x^2+3x+7\) chia hết cho x+3 thì:
\(\frac{x^2+3x+7}{x+3}\in Z\). Đặt A\(=\frac{x^2+3x+7}{x+3}\)
Ta có: \(\frac{x^2+3x+7}{x+3}=\frac{x^2+6x+9-3x-9+7}{x+3}\)
\(=\frac{\left(x^2+6x+9\right)-\left(3x+9\right)+7}{x+3}\)
\(=\frac{\left(x^2+3x+3x+9\right)-3\left(x+3\right)+7}{x+3}\)\(=\frac{\left[x\left(x+3\right)+3\left(x+3\right)\right]-3\left(x+3\right)+7}{x+3}\)
\(=\frac{\left(x+3\right)\left(x +3\right)-3\left(x+3\right)+7}{x+3}\)\(=\frac{\left(x+3\right)^2}{x+3}-\frac{3\left(x+3\right)}{x+3}+\frac{7}{x+3}\)\(=x+3-3+\frac{7}{x+3}\)
\(=x+\frac{7}{x+3}\)
Do đó, để A thuộc Z thì \(7⋮x+3\)
Khi đó: \(x+3\inƯ\left(7\right)\)\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
1.
\(3x+4⋮x-3\)
\(\Rightarrow3x-9+9+4⋮x-3\)
\(\Rightarrow3x-3\cdot3+13⋮x-3\)
\(\Rightarrow3\left(x-3\right)+13⋮x-3\)
\(3\left(x-3\right)⋮x-3\)
\(\Rightarrow13⋮x-3\)
\(\Rightarrow x-3\inƯ\left(13\right)\) ; \(x\in Z\Rightarrow x-3\in Z\)
\(\Rightarrow x-3\in\left\{-1;1;13;-13\right\}\)
\(\Rightarrow x\in\left\{2;4;16;-10\right\}\)
vậy_____
2.
\(x^2+7⋮x+1 \)
\(\Rightarrow x\cdot x+7⋮x+1\)
\(\Rightarrow x\cdot x+x-x+7⋮x+1\)
\(\Rightarrow x\cdot\left(x+1\right)-x+7⋮x+1\)
\(x\cdot\left(x+1\right)⋮x+1\)
\(\Rightarrow x+7⋮x+1\)
\(\Rightarrow x+1+6⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)\) ; \(x\in Z\Rightarrow x+1\in Z\)
\(\Rightarrow x+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
vậy______
3x+4 chia hết cho x-3
3x-9+13 chia hết cho x-3
3.(x-3)+13 chia hết cho x-3
ma 3.(x-3) chia hết cho x-3
13 chia hết cho x-3
x-3 thuoc U(13)={1,-1,13,-13}
suy ra x thuộc{2,4,16,-10}
2x-1 chia hết cho x+1
2x+2-3 chia hết cho x+1
2(x+1)-3 chia hết cho x+1
3 chia hết cho x+1
x+1 thuộc Ư(3)={1,-1,3,-3}
suy ra x thuộc {0,2,-2,-4}
CHÚC BẠN HỌC TỐT NHÉ !!!!!!
a)=>(2n+10)-10 chia hết cho n+5
=>2(n+5)-10 chia hết cho n+5
Mà 2(n+5) chia hết cho n+5
=>10 chia hết cho n+5
=>n+5 thuộc Ư(10)={1;2;5;10;-1;-2;-5;-10}
=>n thuộc {-4;-3;0;5;-6;-7;-10;-15}
b)=>x(x+2) chia hết cho x+2
Mà x(x+2) chia hết cho x+2
=>Mọi số nguyên x đều thỏa mãn
a) 7.(x-5) +2 = 51
=> 7.(x-5) = 49
=> x-5 = 7
=> x= 12
b)\(\left(4^3-11.x\right).5^3=4.5^4\)
\(\Rightarrow\left(64-11.x\right).125=2500\)
\(\Rightarrow64-11.x=20\)
\(\Rightarrow11.x=44\)
\(\Rightarrow x=4\)
Lời giải:
$x+3\vdots x^2-7(1)$
$\Rightarrow x(x+3)\vdots x^2-7$
$\Rightarrow x^2+3x\vdots x^2-7$
$\Rightarrow (x^2-7)+(3x+7)\vdots x^2-7$
$\Rightarrow 3x+7\vdots x^2-7(2)$
Từ $(1); (2)$ suy ra: $3(x+3)-(3x+7)\vdots x^2-7$
$\Rightarrow 2\vdots x^2-7$
$\Rightarrow x^2-7\in \left\{\pm 1; \pm 2\right\}$
$\Rightarrow x^2\in \left\{8; 6; 9; 5\right\}$
Do $x^2$ là số chính phương với $x$ nguyên nên $x^2=9=3^2=(-3)^2$
$\Rightarrow x=\pm 3$