K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Bài 3:

1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy.......................

2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

Vậy........................

3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy............................

4, 5 tương tự nhé bn!

12 tháng 10 2017

bài 3

1 (x-1)(x+2)+5x-5=0

=>(x-1)(x+2)+(5x-5)=o

=>(x-1)(x+2)+5(x-1)=0

=>(x-1)(x+2+5)=0

=>(x-1)(x+7)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

vậy x=1 hoặc x=-7

2. (3x+5)(x-3)-6x-10=0

=>(3x+5)(x-3)-(6x+10)=0

=>(3x+5)(x-3)-2(3x+5)=0

=>(3x+5)(x-3-2)=0

=>(3x+5)(x-5)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

2 tháng 2 2017

b)x^3 - 6x^2 +11x-6=0

<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0

<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0

<=>(x-1).(x^2 - 5x + 6)=0

<=>(x - 1).(x^2 - 2x - 3x + 6)=0

<=>(x - 1).[(x(x-2)-3(x-2)]=0

<=>(x-1)(x-2)(x-3)=0

<=>x-1=0hoac x-2=0 hoac x-3=0

<=>x=1hoac x=2 hoac x=3

1 tháng 2 2017

bạn mua cái máy tính vinacal xog giải nghiệm ra hết thui

13 tháng 7 2017

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

13 tháng 7 2017

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Bài 1:

a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)

c)Đề sai hoàn toàn

d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)

f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)

g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)

i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

15 tháng 8 2020

a, 15x3 - 15x = 0    

15x(x2-1)=0

15x=0 hoặc x2-1=0  (tự tính nhoa)

b,3x2-6x+3=0

3(x2-2x+1)=0

x-2x+1=0:3=3

x2-2x=3-1=2

x(x-2)=0

x=0 hoặc x-2=0 (tự tính nhoa)

15 tháng 8 2020

Bài làm

a) 15x3-15x=0

<=> 15x( x2 - 1 ) = 0

<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy x = { 0; + 1 }

b) 3x- 6x + 3 = 0

<=> 3( x2 - 2x + 1 ) = 0

<=> x2 - 2x + 1 = 0

<=> ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

Vậy x = 1

c) 5(x - 1) - 3x(1 - x) = 0

<=> 5(x - 1) + 3x(x - 1) = 0

<=> (5 + 3x)(x - 1) = 0

<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)

Vậy x = { -5/3; 1 }

e) -7(x + 2) = 2x(x + 2) 

<=> -7(x + 2 ) - 2x( x + 2 ) = 0

<=> (x + 2)(-7 - 2x) = 0

<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)

Vậy x = { -2; x = -7/2 }

f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)

<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0

<=> (3x + 5)(2x - 3 - x + 1) = 0

<=> (3x + 5)(x - 2) = 0

<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)

Vậy x = { -5/3; 2 }