Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 3 chia hết x - 1
x + 3 - ( x - 1 ) chia hết x - 1
2 chia hết x - 1
Do đó x - 1 thuộc Ư (2) = ( 1,-1,2,-2)
x - 1 = 1 suy ra x = 2
x - 1 = -1 suy ra x = 0
x - 1 = 2 suy ra x = 3
x - 1 = -2 suy ra x = -1
Vậy x = 2, 0, 3, -1
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có:\(\dfrac{x-2}{x+3}=\dfrac{x+3-5}{x+3}=1-\dfrac{5}{x+3}\)
Để bt có giá trị là số tự nhiên thì \(5⋮x+3\Rightarrow x+3\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
x + 3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
Kết luận | thỏa mãn | loại | thỏa mãn | loại |
=> \(x=\pm2\)
Giải:
a) \(\dfrac{x-2}{x+3}\)
Để \(\dfrac{x-2}{x+3}\) là số tự nhiên thì \(x-2⋮x+3\)
\(x-2⋮x+3\)
\(\Rightarrow x+3-5⋮x+3\)
\(\Rightarrow5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng giá trị:
x+3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
Ta thấy:
Nếu \(x\in\left\{-8;-4;2\right\}\) thì \(\dfrac{x-2}{x+3}\) sẽ là số tự nhiên
Vậy \(x\in\left\{-8;-4;2\right\}\)
Chúc bạn học tốt!
\(B=\frac{3-x}{x-1}=\frac{2+1-x}{x-1}=\frac{2}{x-1}-1\)là số nguyên \(\Leftrightarrow\frac{2}{x-1}\)là số nguyên mà \(x\)nguyên nên
\(x-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow x\in\left\{-1,0,2,3\right\}\).
Để \(\frac{3n+4}{n-1}\)là số nguyên thì:
\(3n+4⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\)
nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)
Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2
<=>x+2-11\(⋮\)x+2
Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2
=>x+2EƯ(11)={-1;1;-11;11}
=>xE{-3;-1;-13;9}
Để x-9/x+2 có giá trị là một số nguyên thì ta có:
x-9 chia hết cho x+2
=> x+2-11 chia hết cho x+2
Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2
=> x+2 ϵ Ư(11) = {-1;1;-11;11}
=> x ϵ { -3;-1;-13;9 }
Vì \(\frac{15}{2\cdot x+1}\)là số nguyên => 2.x + 1 = 1, 3, 5, 15
x = (1 - 1) : 2 = 0
x = (3 - 1) : 2 = 1
x = (5 - 1) : 2 = 2
x = (15 - 1) : 2 = 7
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=\dfrac{x-1}{x-1}+\dfrac{4}{x-1}=1+\dfrac{4}{x-1}\)
Để đạt GT nguyên thì \(\dfrac{4}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ_{\left(4\right)}=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-3;-1;0;2;3;5\right\}\)
\(\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)