Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1998}=3\)
\(\Leftrightarrow\left(\frac{x-1}{2006}-1\right)+\left(\frac{x-10}{1997}-1\right)+\left(\frac{x-19}{1998}-1\right)=0\)
\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1998}=0\)
\(\Leftrightarrow\left(x-2007\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)
Dễ thấy cái đằng sau luôn > 0 nên x-2007=0 <=> x=2007
Đặt \(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}\left(1\right)\)
\(\left(1\right)\Leftrightarrow\frac{x-2007}{2006}=\frac{x-2007}{1997}=\frac{x-2007}{1998}=0\)
\(\Rightarrow x=2007\)
Bạn sửa đề lại nha.
\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)
=>\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}-3=0\)
=>\(\left(\frac{x-1}{2006}-1\right)+\left(\frac{x-10}{1997}-1\right)+\left(\frac{x-19}{1988}-1\right)=0\)
=>\(\frac{x-1-2006}{2006}+\frac{x-10-1997}{1997}+\frac{x-19-1988}{1988}=0\)
=>\(\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1988}=0\)
=>\(\left(x-2007\right).\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)
Vì \(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\ne0\)
=>x-2007=0
=>x=2007
<=> (x-1/2006 - 1)+(x-10/1997 - 1)+(x-19/1988 - 1) = 0
<=> x-2007/2006 + x-2007/1997 + x-2007/1988 = 0
<=> (x-2007).(1/2006+1/1997+1/1988) = 0
<=> x-2007=0 ( vì 1/2006+1/1997+1/1988 > 0 )
<=> x=2007
Vậy x=2007
k mk nha
Sửa đề :
\(\dfrac{x+1}{2006}+\dfrac{x+10}{1997}+\dfrac{x+19}{1988}=-3\)
\(\Leftrightarrow\left(\dfrac{x+1}{2006}+1\right)+\left(\dfrac{x+10}{1997}+1\right)+\left(\dfrac{x+19}{1988}+1\right)=0\)
\(\Leftrightarrow\dfrac{x+2007}{2006}+\dfrac{x+2007}{1997}+\dfrac{x+2007}{1988}=0\)
\(\Leftrightarrow\left(x+1007\right)\left(\dfrac{1}{2006}+\dfrac{1}{1997}+\dfrac{1}{1988}\right)=0\)
Mà \(\dfrac{1}{2006}+\dfrac{1}{1997}+\dfrac{1}{1988}\ne0\)
\(\Leftrightarrow x+2007=0\)
\(\Leftrightarrow x=-2007\)
Vậy..
1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)
\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)
\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)
Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)
2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)
\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)
\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)
\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
Vậy \(x=2003\)
3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)
\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)
\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)
Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)
\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)
Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)
\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)
Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)
pạn -1 vào mỗi phân số là xong. Rùi ra x\(\frac{x-2015}{1986}\)+\(\frac{x-2015}{1988}\)+ \(\frac{x-2015}{1990}\)+...+\(\frac{x-2015}{x1996}\)-\(\frac{x-2015}{29}\)-\(\frac{x-2015}{27}\)-...\(\frac{x-2015}{19}\)=0
<=>(x-2015)(\(\frac{1}{1986}\)+\(\frac{1}{1988}\)+... -\(\frac{1}{19}\))=0...(mà \(\frac{1}{1986}\)+...- \(\frac{1}{19}\) khác 0)
=>x-2015=0
<=> x=2015
\(\)Sửa lại đề câu a:
\(a.\frac{x-13}{2006}+\frac{x-22}{1997}+\frac{x-21}{1998}=3\\ \Leftrightarrow\frac{x-13}{2006}-1+\frac{x-22}{1997}-1+\frac{x-21}{1998}-1=0\\\Leftrightarrow \frac{x-2019}{2006}+\frac{x-2019}{1997}+\frac{x-2019}{1998}=0\\ \Leftrightarrow\left(x-2019\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\right)=0\\\Leftrightarrow x-2019=0\left(Vi\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\ne0\right)\\\Leftrightarrow x=2019\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2019\right\}\)
Đặt \(y=x^2+x\) ta có:
\(y^2+4y=12\\\Leftrightarrow y^2+4y-12=0\\\Leftrightarrow y^2+4y+4-16=0\\ \Leftrightarrow\left(y+2\right)^2-4^2=0\\\Leftrightarrow \left(y+2-4\right)\left(y+2+4\right)=0\\ \Leftrightarrow\left(y-2\right)\left(y+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=2\\y=-6\end{matrix}\right.\)
Thay \(y=x^2+x\) vào ta có:
\(x^2+x=2\\ \Leftrightarrow x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(x^2+x=-6\\ \Rightarrow x^2+x+6\ge0\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-2\right\}\)
\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)
\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1988}=0\)
\(\Leftrightarrow x=2007\)
✰ ღ๖ۣۜDαɾƙ ๖ۣۜBαηɠ ๖ۣۜSĭℓεηтღ✰
lắm tắt thế này đi thi ko đc điểm đâu nhóc =))