\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1998}=3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

Bạn sửa đề lại nha.

\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)

=>\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}-3=0\)

=>\(\left(\frac{x-1}{2006}-1\right)+\left(\frac{x-10}{1997}-1\right)+\left(\frac{x-19}{1988}-1\right)=0\)

=>\(\frac{x-1-2006}{2006}+\frac{x-10-1997}{1997}+\frac{x-19-1988}{1988}=0\)

=>\(\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1988}=0\)

=>\(\left(x-2007\right).\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)

Vì \(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\ne0\)

=>x-2007=0

=>x=2007

17 tháng 3 2020

\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1998}=3\)

\(\Leftrightarrow\left(\frac{x-1}{2006}-1\right)+\left(\frac{x-10}{1997}-1\right)+\left(\frac{x-19}{1998}-1\right)=0\)

\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1998}=0\)

\(\Leftrightarrow\left(x-2007\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)

Dễ thấy cái đằng sau luôn > 0 nên x-2007=0 <=> x=2007

\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)

\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1988}=0\)

\(\Leftrightarrow x=2007\)

17 tháng 8 2019

✰ ღ๖ۣۜDαɾƙ ๖ۣۜBαηɠ ๖ۣۜSĭℓεηтღ✰

lắm tắt thế này đi thi ko đc điểm đâu nhóc =))

8 tháng 11 2019

Đặt \(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}\left(1\right)\)

\(\left(1\right)\Leftrightarrow\frac{x-2007}{2006}=\frac{x-2007}{1997}=\frac{x-2007}{1998}=0\)

\(\Rightarrow x=2007\)

8 tháng 11 2019

Em kiểm tra lại đề bài nhé! Thiếu đề rồi.

9 tháng 2 2020

\(\)Sửa lại đề câu a:

\(a.\frac{x-13}{2006}+\frac{x-22}{1997}+\frac{x-21}{1998}=3\\ \Leftrightarrow\frac{x-13}{2006}-1+\frac{x-22}{1997}-1+\frac{x-21}{1998}-1=0\\\Leftrightarrow \frac{x-2019}{2006}+\frac{x-2019}{1997}+\frac{x-2019}{1998}=0\\ \Leftrightarrow\left(x-2019\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\right)=0\\\Leftrightarrow x-2019=0\left(Vi\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\ne0\right)\\\Leftrightarrow x=2019\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{2019\right\}\)

9 tháng 2 2020

Đặt \(y=x^2+x\) ta có:

\(y^2+4y=12\\\Leftrightarrow y^2+4y-12=0\\\Leftrightarrow y^2+4y+4-16=0\\ \Leftrightarrow\left(y+2\right)^2-4^2=0\\\Leftrightarrow \left(y+2-4\right)\left(y+2+4\right)=0\\ \Leftrightarrow\left(y-2\right)\left(y+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=2\\y=-6\end{matrix}\right.\)

Thay \(y=x^2+x\) vào ta có:

\(x^2+x=2\\ \Leftrightarrow x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(x^2+x=-6\\ \Rightarrow x^2+x+6\ge0\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-2\right\}\)

Chúc bạn học tốt :))

12 tháng 3 2020

a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)

\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)

\(\Rightarrow x=-100\)

b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)

\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)

\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)

12 tháng 3 2020

b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)

=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0

\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0

\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))

\(\Leftrightarrow\)x=-1999

Vậy x=-1999

Giải các phương trình sau : ( biến đổi đặc biệt )a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử...
Đọc tiếp

Giải các phương trình sau : ( biến đổi đặc biệt )

a) \(\frac{x+1}{35}\)\(\frac{x+3}{33}\)\(\frac{x+5}{31}\)\(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )

b) \(\frac{x-10}{1994}\)\(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)\(\frac{x-4}{2000}\)\(\frac{x-2}{2002}\)\(\frac{x-2002}{2}\)\(\frac{x-2000}{4}\)\(\frac{x-1988}{6}\)\(\frac{x-1996}{8}\)\(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử ) 

c) \(\frac{x-1991}{9}\)\(\frac{x-1993}{7}\)\(\frac{x-1995}{5}\)\(\frac{x-1997}{3}\)\(\frac{x-1991}{1}\)\(\frac{x-9}{1991}\)\(\frac{x-7}{1993}\)\(\frac{x-5}{1995}\)\(\frac{x-3}{1997}\)\(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )

d) \(\frac{x-85}{15}\)\(\frac{x-74}{13}\)\(\frac{x-67}{11}\)\(\frac{x-64}{9}\)= 10  ( Chú ý : 10 = 1 + 2 + 3 + 4 )

e) \(\frac{x-1}{13}\)\(\frac{2x-13}{15}\)\(\frac{3x-15}{27}\)\(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )

 

1
16 tháng 4 2020

a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(=>x+36=0\)

\(=>x=36\)

29 tháng 3 2020

b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)

=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)

=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)

=> \(x-2004=0\)

=> \(x=2004\)

Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)

a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)

nên x+36=0

hay x=-36

Vậy: x=-36