K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

x2 + 5y2 - 2xy + 4x - 8y + 5 = 0

<=> (x2 - 2xy + y2) + 4(x - y) + 4 + (4y2 - 4y + 1) = 0

<=> (x - y)2 + 4(x - y) + 4 + (2y - 1)2 = 0

<=> (x - y + 2)2 + (2y - 1)2 = 0

<=> \(\hept{\begin{cases}x-y+2=0\\2y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=2-y\\y=\frac{1}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=2-\frac{1}{2}=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

11 tháng 8 2020

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

8 tháng 11 2018

\(x^2+5y^2-2xy+8y+4=0\)

\(x^2+y^2+4y^2-2xy+8y+4=0\)

\(\left(x^2-2xy+y^2\right)+\left(4y^2+8y+4\right)=0\)

\(\left(x-y\right)^2+\left(2y+2\right)^2=0\)

Vì \(\left(x-y\right)^2\ge0\forall x;y\)và \(\left(2y+2\right)^2\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}x-y=0\\2y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=-1\end{cases}\Rightarrow}x=y=-1}\)

Vậy x = y = -1

8 tháng 8 2019

\(x^2+5y^2+2xy+4x+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4x+4y+5=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+1=0\)

\(\Leftrightarrow\left(x+y+1\right)^2+1=0\)

Do \(\left(x+y+1\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+1>0\)

Vậy không tồn tại x,y thỏa mãn

8 tháng 8 2019

Cool Kid làm nhầm thì phải nên mình làm lại!

\(x^2+2x\left(y+2\right)+5y^2+5\)

\(=x^2+2.x\left(y+2\right)+\left(y+2\right)^2+5y^2+5-\left(y+2\right)^2\)

\(=\left(x+y+2\right)^2+4y^2-4y+1\)

\(=\left(x+y+2\right)^2+\left(2y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}2y=1\\x+y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy...

P/s: Tính sai chỗ nào tự sửa nhé, hướng làm là vậy đấy, dù sao đi  nữa kết quả vẫn đúng:D

20 tháng 2 2018

GTNN là 2018 <=> x = 0 , y = 0 

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

25 tháng 11 2017

\(x^2+5y^2-4x+2xy-8y+2022\\ =x^2+y^2+4y^2-4x+2xy-4y-4y+4+1+2017\\ =\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+4+\left(4y^2-4y+1\right)+2017\\ =\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2017\\ =\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(2y-1\right)^2+2017\\ =\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\\ Do\text{ }\left(2y-1\right)^2\ge0\forall y\\ \left(x+y-2\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\ge2017\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(2y-1\right)^2=0\\\left(x+y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=1\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là:\text{ }2017\text{ }khi\text{ }\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

27 tháng 1 2017

a, đặt ( x2+x)=y ta có :

y2+4y=12 <=> y2+4y-12=0

<=> y2+4y+4-16 =0

<=>(y2+4y+4)-16+=0

<=> (y+2)2-16=0

<=>(y-2)(y+6)=0

<=>y-2=0 hoặc y+6=0

<=> y=2 hoặc y=-6

<=> x2+x=2 hoặc x2+x=-6

<=> x2+x -2=0 hoặc x2+x+6=0(vô lý)

<=> (x-1)(x+2)=0 <=> x-1=0 hoặc x+2=0

<=> x=1 hoặc x=-2

vậy pt có nghiệm là x=1 và x=-2

27 tháng 1 2017

b,6x4-5x3-38x2-5x+6=0

<=>6x4-18x3+13x3-39x2+x2-3x-2x+6=0

<=>6x3(x-3)+13x2(x-3)+x(x-3)-2(x-3)=0

<=>(x-3)(6x3+13x2+x-2)=0

<=>(x-3)(6x3+12x2+x2+2x-x-2)=0

<=>(x-3)(6x2(x+2)+x(x+2)-(x+2))=0

<=>(x-3)(x+2)(6x2+x-1)=0

<=>(x-3)(x+2)(3x-1)(2x+1)=0

tới đây tự làm