K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

a, đặt ( x2+x)=y ta có :

y2+4y=12 <=> y2+4y-12=0

<=> y2+4y+4-16 =0

<=>(y2+4y+4)-16+=0

<=> (y+2)2-16=0

<=>(y-2)(y+6)=0

<=>y-2=0 hoặc y+6=0

<=> y=2 hoặc y=-6

<=> x2+x=2 hoặc x2+x=-6

<=> x2+x -2=0 hoặc x2+x+6=0(vô lý)

<=> (x-1)(x+2)=0 <=> x-1=0 hoặc x+2=0

<=> x=1 hoặc x=-2

vậy pt có nghiệm là x=1 và x=-2

27 tháng 1 2017

b,6x4-5x3-38x2-5x+6=0

<=>6x4-18x3+13x3-39x2+x2-3x-2x+6=0

<=>6x3(x-3)+13x2(x-3)+x(x-3)-2(x-3)=0

<=>(x-3)(6x3+13x2+x-2)=0

<=>(x-3)(6x3+12x2+x2+2x-x-2)=0

<=>(x-3)(6x2(x+2)+x(x+2)-(x+2))=0

<=>(x-3)(x+2)(6x2+x-1)=0

<=>(x-3)(x+2)(3x-1)(2x+1)=0

tới đây tự làm

24 tháng 6 2017

Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG

a)\(A=x^2-6x+15\)

\(\Leftrightarrow A=x^2-6x+9+6\)

\(\Leftrightarrow A=\left(x-3\right)^2+6\)

            Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)

Dấu = xảy ra khi x - 3 = 0 ; x = 3

       Vậy Min A = 6 khi x=3

b)\(B=x^2+4x\)

\(\Leftrightarrow B=x^2+4x+4-4\)

\(\Leftrightarrow B=\left(x+2\right)^2-4\)

          Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\

     Dấu = xảy ra khi x + 2 = 0 ; x = -2

Vậy Min B = -4 khi x =-2

1 tháng 1 2018

\(\text{a) }\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \Leftrightarrow\text{Đặt }x^2+x=y\\ \Leftrightarrow y^2+4y=12\\ \Leftrightarrow y^2+6y-2y-12=0\\ \Leftrightarrow\left(y^2+6y\right)-\left(2y+12\right)=0\\ \Leftrightarrow y\left(y+6\right)-2\left(y+6\right)=0\\ \Leftrightarrow\left(y+6\right)\left(y-2\right)=0\\ \Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{23}{4}\right)\left(x^2+2x-x-2\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{23}{4}\right]\left[\left(x^2+2x\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\left[x\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\left(Vì\text{ }\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\ \text{Vậy }S=\left\{1;-2\right\}\\ \)

\(\text{b) }6x^4-5x^3-38x^2-5x+6=0\\ \Leftrightarrow x^2\left(6x^2-5x-38-\dfrac{5}{x}+\dfrac{6}{x^2}\right)=0\\ \Leftrightarrow x^2\left[\left(6x^2+12+\dfrac{6}{x^2}\right)-\left(5x+\dfrac{5}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x^2+2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x+\dfrac{1}{x}\right)^2-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \text{Đặt }x+\dfrac{1}{x}=y\\ \Leftrightarrow x^2\left(6y^2-5y-50\right)=0\\ \Leftrightarrow x^2\left(6y^2-20y+15y-50\right)=0\\ \Leftrightarrow x^2\left[\left(6y^2-20y\right)+\left(15y-50\right)\right]=0\\ \Leftrightarrow x^2\left[2y\left(3y-10\right)+5\left(3y-10\right)\right]=0\\ \Leftrightarrow x^2\left(2y+5\right)\left(3y-10\right)=0\\ \Leftrightarrow x^2\left(2x+\dfrac{2}{x}+5\right)\left(3x+\dfrac{3}{x}-10\right)=0\\ \Leftrightarrow\left(2x^2+2+5x\right)\left(3x^2+3-10x\right)=0\\ \Leftrightarrow\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)=0\\ \Leftrightarrow\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)=0\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\3x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=-2\\3x=1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\\x=\dfrac{1}{3}\\x=3\end{matrix}\right.\\ \text{Vậy }S=\left\{-\dfrac{1}{2};-2;\dfrac{1}{3};3\right\}\)

19 tháng 6 2015

a) x^2+2xy+y^2-16

=(x+y)2-16

=(x+y-4)(x+y+4)

b) 3x^2+5x-3xy-5y

=(3x2-3xy)+(5x-5y)

=3x(x-y)+5(x-y)

=(x-y)(3x+5)

c) 4x^2-6x^3y-2x^2+8x

ko bik hoặc sai đề

d) x^2-4-2xy+y^2

=(x-y)2-4

=(x-y+2)(x-y-2)

e) x^3-4x^2-12x+27

=sai đề

g) 3x^2-18x+27

=3(x2-6x+9)

=3(x-3)2

h) x^2-y^2-z^2-2yz

=x2-(y2+z2+2yx)

=x2-(y+z)2

=(x-y-z)(x+y+z)

k) 4x^2(x-6)+9y^2(6-x)

=4x2(x-6)-9y2(x-6)

=(x-6)(4x2-9y2)

=(x-6)(2x-3y)(2x+3y)

l)6xy+5x-5y-3x^2-3y^2

=(5x-5y)+(-3x2+6xy-3y2)

=5(x-y)-3(x2-2xy+y2)

=5(x-y)-3(x-y)2

=(x-y)(5-3(x-y))

=(x-y)(5-3x+3y)

26 tháng 7 2018

help me

dễ mà bạn xin 20 phút làm ra giấy nhé :)) 

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

4 tháng 2 2018

1 ) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(t=x^2+x\), ta được :

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

+ ) Khi \(t=2,\) thì :

\(x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

+ ) Khi \(t=-6,\) thì :

\(x^2+x=-6\)

\(\Leftrightarrow x^2+x+6=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\) ( vô lí )

Vậy .........

2 ) \(6x^4-5x^3-38x^2-5x+6=0\)

\(\Leftrightarrow6x^4-18x^3+13x^3-39x^2+x^2-3x-2x+6=0\)

\(\Leftrightarrow6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+13x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+3x-2x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left[3x\left(2x+1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)