K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

a)27n:3n=9

   (27:3)n=9

   9n=91

   n=1

Vậy n=1

b)\(\left(\frac{25}{5}\right)^n=5\)

    \(5^n=5^1\)

    n=1

Vạy n=1

 

 

13 tháng 9 2016

c)\(\left(-\frac{81}{3}\right)^n=-243\)

   \(\left(-27\right)^n=\left(-3\right)^5\)

   \(\left[\left(-3\right)^3\right]^n=\left(-3\right)^5\)

   \(\left(-3\right)^{3n}=\left(-3\right)^5\)

    \(3n=5\)

   \(n=\frac{5}{3}\)

Vậy \(n=\frac{5}{3}\)

d)\(\frac{1}{2}.2^n+4.2^n=9.5^n\)

   \(2^n.\left(\frac{1}{2}+4\right)=9.5^n\)

   \(2^n.\frac{9}{2}=3^2.5^n\)

4 tháng 11 2017

a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)

=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)

=>n=5

b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)

=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)

=>n=3

c)\(\dfrac{16}{2^n}=2\)

=>2n=\(\dfrac{16}{2}\)

=>2n=8

=>2n=23

=>n=3

d)\(\dfrac{\left(-3\right)^n}{81}=-27\)

=>(-3)n=-27.81

=>(-3)n=-2187

=>(-3)n=(-3)7

=>n=7

e)8n:2n=4

=>(23)n:2n=4

=>23n:2n=4

=>23n-n=4

=>22n=4

=>22n=22

=>2n=2

=>n=1

f)32.3n=35

=>3n=35:32

=>3n=35-2

=>3n=33

=>n=3

g) (22:4).2n=4

=>1.2n=22

=>n=2

h)3-2.34.3n=37

=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37

=>32.3n=37

=>32+n=37

=>2+n=7

=>n=5

10 tháng 7 2017

1. Tìm n, biết:

a) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)

(-2)n + 2 = (-2)5

n + 2 = 5

n = 5 - 2

n = 3.

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow\dfrac{2^3}{2^n}=2\)

\(\Rightarrow\) 2n . 2 = 23

n + 1 = 3

n = 3 - 1

n = 2.

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

2n - 1 = 3

2n = 3 + 1

2n = 4

n = 4 : 2

n = 2.

2. Tính:

a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)

\(=\left(\dfrac{1}{2}\right)^7\)

\(=\dfrac{1}{128}\)

b) 273 : 93

= (33)3 : (32)3

= 39 : 36

= 33

= 27

c) 1252 : 253

= (53)2 : (52)3

= 56 : 56

= 1

d) \(\dfrac{27^2.8^5}{6^6.32^3}\)

\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)

\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)

\(=\dfrac{3^6}{6^6}\)

\(=\dfrac{1}{64}.\)

10 tháng 7 2017

B2 :

b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)

c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1

16 tháng 9 2017

a, \(\left(4.2\right)^5:\left(2^3.\dfrac{1}{16}\right)=8^5:\left(2^3.\dfrac{1^4}{2^4}\right)=\left(2^3\right)^5:\dfrac{2^3.1^4}{2^4}=2^{15}:\dfrac{1}{2}=2^{15}.2=2^{16}\)

\(b,\dfrac{2^2.4.32}{2^2.2^5}=\dfrac{2^2.2^4.2^5}{2^2.2^5}=2^4=16\)

16 tháng 9 2017

\(a,\dfrac{\left(4.2\right)^5}{2^3.\dfrac{1}{16}}=\dfrac{\left(2^3\right)^5}{2^3.2^{-4}}=\dfrac{2^{15}}{2^{-1}}=2^{16}\)

b,\(\dfrac{2^2.4.32}{2^2.2^5}=\dfrac{2^2.2^2.2^5}{2^2.2^5}=2^2=4\)

26 tháng 6 2017

a, \(\dfrac{16}{2^n}=2\)

\(2^n=\dfrac{16}{2}\)

\(2^n=8\)

\(2^n=2^3\)

=> n = 3

b, \(\dfrac{\left(-3\right)^n}{81}=-27\)

\(\left(-3\right)^n=-27\cdot81\)

\(\left(-3\right)^n=\left(-3\right)^3\cdot3^4\)

\(\left(-3\right)^n=\left(-3\right)^7\)

=> n = 7

c, \(8^n:2^n=4\)

\(2^{3n}:2^n=2^2\)

\(2^{2n}=2^2\)

=> 2n = 2

n = 2:2

n = 1

26 tháng 6 2017

a )

\(\dfrac{16}{2^n}=2\) \(\Leftrightarrow16:x=2\)

\(\Rightarrow x=8\)

\(2^n=8\Rightarrow n=3\)

b )

\(\dfrac{\left(-3\right)^n}{81}=-27\) \(\Leftrightarrow x=-27.81\)

\(\Rightarrow x=-2187\)

\(\left(-3\right)^n=-2187\Rightarrow n=7\)

c )

\(8^n:2^n=4\Leftrightarrow4^n=4\)

\(\Rightarrow n=1\)

21 tháng 12 2017

1. Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\text{và (2)}\) \(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2. \(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|\ge0\\\left|\dfrac{2}{7}y+3\right|\ge0\end{matrix}\right.\Rightarrow\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|\ge0\)
\(\text{Mà }\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|=0\\\left|\dfrac{2}{7}y+3\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5-\dfrac{3}{4}x=0\\\dfrac{2}{7}y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x=5\\\dfrac{2}{7}x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)

21 tháng 12 2017

3. \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}\)
\(\text{Mà }a-b=15\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=\dfrac{a-b}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=30\Rightarrow a=30.2=60\\\dfrac{b}{\dfrac{3}{2}}=30\Rightarrow b=30.\dfrac{3}{2}=45\\\dfrac{c}{\dfrac{4}{3}}=30\Rightarrow c=30.\dfrac{4}{3}=40\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}a=60\\b=45\\c=40\end{matrix}\right.\)

13 tháng 12 2017

a) \(2010^{100}+\)\(2010^{99}=2010^{99}.2010+2010^{99}.1=2010^{99}.\left(2010+1\right)=2010^{99}.2011\)Vậy biểu thức chia hết cho 2011.