Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Ta có : \(\frac{2x-1}{x+1}=\frac{2017}{2018}\)
=> 2018(2x - 1) = 2017(x + 1)
=> 4036x - 2018 = 2017x + 2017
=> 4036x - 2017x = 2017 + 2018
=> 2019x = 4035
=> x = \(\frac{4035}{2019}\)
\(a,\frac{2x-1}{x+1}=\frac{2017}{2018}\)
\(\Leftrightarrow2018.\left(2x-1\right)=2017.\left(x+1\right)\)
\(\Leftrightarrow4036x-2018=2017x+2017\) \(\Leftrightarrow4036x-2017x=2018+2017\)
\(\Leftrightarrow2019x=4035\Leftrightarrow x=\frac{4035}{2019}\)
\(b,\frac{x+2}{2x-5}=\frac{-x+3}{6-2x}\)( Điều kiện : \(x\ne3;x\ne2,5\))
\(\Leftrightarrow\left(x+2\right).\left(-2x+6\right)=\left(-x+3\right).\left(2x-5\right)\)
\(\Leftrightarrow-2x^2+6x-4x+12=-2x^2+5x+6x-15\)
\(\Leftrightarrow-2x^2+6x-4x+2x^2-5x-6x=-15-12\)
\(\Leftrightarrow-9x=-27\Leftrightarrow x=3\)( không thỏa mãn điều kiện )
\(\Rightarrow\)phương trình vô nghiệm .
\(\Rightarrow x\in\Phi\)
Ta có : \(\frac{x+1}{5}=\frac{x+2}{6}\)
\(\Rightarrow\left(x+1\right)6=5\left(x+2\right)\)
\(\Leftrightarrow6x+6=5x+10\)
\(\Leftrightarrow6x-5x=10-6\)
\(\Rightarrow x=4\)
\(\frac{x+1}{2}\)= \(\frac{8}{x+1}\)
x + 1 . x + 1 = 2 . 8
x . 2 = 16
x = 16 : 2
x = 8
52x - 1 = 52x - 3 + 125 . 24
52x - 1 - 52x - 3 = 125 . 24
52x - 1 . (1 - \(\frac{1}{25}\)) = 3 000
52x - 1 . \(\frac{24}{25}\) = 3 000
52x - 1 = 3 000 : \(\frac{24}{25}\)
52x - 1 = 3 125
52x - 1 = 55
2x - 1 = 5
2x = 5 + 1
2x = 6
x = 6 : 2
x = 3
\(5^{2x-1}=5^{2x-3}+125.24\)
\(5^{2x}:5=5^{2x}:5^3+3000\)
\(5^{2x}:5.5^3=5^{2x}+3000\)
\(5^{2x}.5^2=5^{2x}+3000\)
\(5^{2x}.5^2-5^{2x}.1=3000\)
\(5^{2x}\left(25-1\right)=3000\)
\(5^{2x}=125=5^3\)
=> 2x = 3
=> x = 3/2
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(\frac{2x+5}{7}=\frac{3-x}{2}\)Theo quy tắc nhân chéo => 7(3-x) = 2(2x+5)
=> 21 - 7x = 4x +10
=> -11x = -11
=> x = 1
<=> (2x+5)2= (3-x)7
<=> 4x+10=21-7x
<=>4x+10-21+7x=0
<=> 11x=11
=> x=1
a.
\(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(x-\frac{1}{5}=\sqrt[5]{\frac{1}{243}}\)
\(x-\frac{1}{5}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{5}\)
\(x=\frac{8}{15}\)
b.
|2x-1|-x=1
\(\Leftrightarrow\orbr{\begin{cases}2x-1-x=1\\-2x+1-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy x= 0 hoặc x=2
c. \(\left|\frac{3}{5}-\frac{1}{2}x\right|>\frac{2}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{5}-\frac{1}{2}x>\frac{2}{5}\\-\frac{3}{5}+\frac{1}{2}x>\frac{2}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x< \frac{1}{5}\\\frac{1}{2}x>\frac{-1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< \frac{2}{5}\\x>\frac{-2}{5}\end{cases}}\)
Vậy....
Bài giải
a, \(\left(x-\frac{1}{5}\right)^5=\frac{1}{243}\)
\(\left(x-\frac{1}{5}\right)^5=\left(\frac{1}{2}\right)^5\)
\(x-\frac{1}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{5}\)
\(x=\frac{7}{10}\)
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\Rightarrow\frac{2x+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow tử=tử,mẫu=mẫu\)
\(\Rightarrow14=7x\Rightarrow x=\frac{14}{7}=2\)
Ta có :\(\frac{2x+1}{5}=\frac{4+1}{5}=\frac{5}{5}=1\)
Suy ra:\(\frac{4y-5}{9}=1\Rightarrow4y-5=9\Rightarrow4y=9+5\Rightarrow4y=14\Rightarrow y=\frac{14}{4}=\frac{7}{2}\)
Vậy x=2 và y=\(\frac{7}{2}\)
\(ĐKXĐ:x\ge\frac{5}{2}\)
\(\left|x-1\right|=2x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-5\\x-1=5-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=2\left(L\right)\end{cases}}\)
Vậy x = 4
Bạn Kiệt dài dòng vậy? Với x >= 5/2 thì biểu thức trong dấu giá trị tuyệt đối dương rồi còn chia 2 trường hợp làm cái quái gì!