Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x^2=60
=>\(x=\pm2\sqrt{15}\)
b: =>2^2x+3=2^3x
=>3x=2x+3
=>x=3
c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)
\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)
=>1/2x-2=4
=>1/2x=6
=>x=12
a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)
<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> \(x-2012=0=>x=2012\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)
=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)
=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(\frac{2x}{2x+1}=\frac{98}{99}\)
=>2x = 98
=>x = 49
\(\frac{1}{1\cdot3}\)+\(\frac{1}{3\cdot5}\)+\(\frac{1}{5\cdot7}\)+\(\frac{1}{7\cdot9}\)+.............+\(\frac{1}{\left(2x-1\right)+\left(2x+1\right)}\)=\(\frac{49}{99}\)
a) \(\left|x+\frac{1}{5}\right|-4=-2\)
=) \(\left|x+\frac{1}{5}\right|=-2+4=2\)
=) \(x+\frac{1}{5}=2\)hoặc \(x+\frac{1}{5}=-2\)
=) \(x=2-\frac{1}{5}=\frac{9}{5}\); =) \(x=\left(-2\right)-\frac{1}{5}=\frac{-11}{5}\)
Vậy \(x=\left\{\frac{9}{5},\frac{-11}{5}\right\}\)
b)\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)
=) \(2x-\frac{6}{5}x=\frac{-1}{2}+\frac{1}{5}\)
=) \(x.\left(2-\frac{6}{5}\right)=\frac{-3}{10}\)
=) \(x.\frac{4}{5}=\frac{-3}{10}\)
=) \(x=\frac{-3}{10}:\frac{4}{5}\)
=) \(x=\frac{-3}{8}\)
c) \(\left(x-3\right)^{x+2}-\left(x-3\right)^{x+8}=0\)
=) \(\left(x-3\right)^{x+2}.\left(1-6\right)=0\)
=) \(\left(x-3\right)^{x+2}=0:\left(1-6\right)=0\)
Mà chỉ có \(0^x=0\)
=) \(x-3=0\)
=) \(x=0+3\)
=) \(x=3\)
a,
\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{5}\\x=-\frac{11}{5}\end{cases}}\)
b,
\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)
\(\Rightarrow2x-\frac{6}{5}x=-\frac{1}{2}+\frac{1}{5}\)
\(\Rightarrow\frac{4}{5}x=-\frac{3}{10}\Leftrightarrow x=-\frac{3}{8}\)
c,
\(\left[x-3\right]^{x+2}-\left[x-3\right]^{x+8}=0\)
=> [x-3]x + 2 = [x-3]x+8
=> x + 2 = x + 8
=> x không tồn tại
\(TH1:a,2\left|x-3\right|+\left|2x+5\right|=11\)
\(\Rightarrow2x-6+2x+5=11\)
\(\Rightarrow4x-1=11\)
\(\Rightarrow4x=12\)
\(\Rightarrow x=3\)
\(TH2:2\left|x-3\right|+\left|2x+5\right|=11\)
\(\Rightarrow-2x+6-2x-5=11\)
\(\Rightarrow-4x+1=11\)
\(\Rightarrow-4x=10\)
\(\Rightarrow x=-2,5\)
\(TH1:b,\left|x-3\right|+\left|5-x\right|+2\left|x-4\right|=2.2\)
\(\Rightarrow x-3+5-x+2x-8=4\)
\(\Rightarrow2x-6=4\)
\(\Rightarrow x=5\)
\(TH2:\left|x-3\right|+\left|5-x\right|+2\left|x-4\right|=4\)
\(\Rightarrow-x+3-5+x-2x+8=4\)
\(\Rightarrow-2x+6=4\)
\(\Rightarrow x=1\)
a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)