Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)
<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)
<=> \(-5x^2-25x+x+5=10x-5x^2\)
<=> \(10x+25x-x=5\)
<=> \(34x=5\)
<=> \(x=\frac{5}{34}\)
b/ pt <=> \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)
<=> \(\left(2x-1\right)^3=0\)
<=> 2 x - 1 = 0
<=> x = 1/2.
\(16x^3-12x^2+3x-7=0\)
\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)
<=> x - 1 = 0
<=> x = 1
\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)
\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)
Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)
\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)
nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 = 0
Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0
2) <=> ( x - 1 )3 = 0 <=> x = 1
3) <=> ( x - 2 )3 = 0 <=> x = 2
4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
(*)\(\left(2x-3\right)^2-\left(3x-2\right)^2=5x\left(2-x\right)\)
\(\Leftrightarrow\left(2x-3+3x+2\right)\left(2x-3-3x-2\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(-x-5\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow-5x^2-25x+x+5-10x+5x^2=0\)
\(\Leftrightarrow-34x=-5\)
\(\Rightarrow x=\dfrac{34}{5}\)
Đề câu 1 bị sao đó.
(*)\(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
Ta có : 12x2 + 8x = 0
<=> 4x(3x + 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\3x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
a, 4x(3x - 2) = 0
=> x=0 hoac x= 2/3
b, 2x2 + 10x - x -5 =0
<=> (x + 5)(2x-1) =0
=> x = -5 hoac x = 1/2
1, \(5x\left(x-1\right)=x-1\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
2, \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Rightarrow24x^2-10x-24x^2+8x=30\) \(\Rightarrow-2x=30\Rightarrow x=-15\)
3, \(3x\left(3-2x\right)+6x\left(x-1\right)=15\) \(\Rightarrow9x-6x^2+6x^2-6x=15\Rightarrow3x=15\Rightarrow x=5\)
4, \(x\left(x-3\right)+x-3=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
a) (5x3 - 3x2) : x2 = 7
5x3 : x2 - 3x2 : x2 = 7
5x - 3 = 7
5x = 7 + 3
5x = 10
x = 10 : 5
x = 2
Vậy x = 2
b) (12x3 - 8x) : x - 4x(3x - 1) = 0
12x3 : x - 8x : x - 12x2 + 4x = 0
12x2 - 8 - 12x2 + 4x = 0
-8 + 4x = 0
4x = 0 + 8
4x = 8
x = 8 : 2
x = 4
Vậy x = 4
8x3 - 12x2 + 3x - 7 = 0
<=> (8x3 - 8x2) - (4x2 - 4x) + (7x - 7) = 0
<=> 8x2(x - 1) - 4x(x - 1) + 7(x - 1) = 0
<=> (8x2 - 4x + 7)(x - 1) = 0
<=> x - 1 = 0 vì 8x2 - 4x + 7 = 4(4x2 - x + 1/16)+ 27/4 = 4(2x - 1/4)2 + 27/4 > 0
<=> x = 1