Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)
a, (a, (x + 2)2 - 9 = 0
⇒ (x + 2)2 = 0 + 9 = 9
⇒ (x + 2)2 = \(\left(\pm3\right)^2\)
⇒ x + 2 = \(\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=3\\x+2=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-2\\x=-3-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy x ∈ {1; -5}
b, \(\left(x+2\right)^2-x^2+4=0\)
⇒ x2 + 4x + 4 - x2 + 4 =0
⇒ 4x + 8 = 0
⇒ 4 (x + 2) = 0
⇒ x + 2 = 0
⇒ x = 0 - 2
⇒ x = -2
Vậy x = -2
c, (x - 3)2 = (2 - 3x)2
⇒ (x - 3)2 - (2 - 3x)2 = 0
⇒ x2 - 6x + 9 - 4 + 12x - 9x2 = 0
⇒ 6x - 8x2 + 5 = 0
⇒2 \(\left(3x-4x^2+\dfrac{5}{2}\right)\)= 0
⇒ 3x - 4x2 + \(\dfrac{5}{2}\) = 0
⇒ - (4x2- 3x + \(\dfrac{9}{16}+\dfrac{31}{16}\)) = 0
⇒ - (4x2 - 3x + \(\dfrac{9}{16}\)) - \(\dfrac{31}{16}\) = 0
⇒ - (2x - \(\dfrac{3}{4}\))2 = \(\dfrac{31}{16}\) (vô lí)
Vậy x ∈ ∅
a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)
<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)
<=> \(-5x^2-25x+x+5=10x-5x^2\)
<=> \(10x+25x-x=5\)
<=> \(34x=5\)
<=> \(x=\frac{5}{34}\)
b/ pt <=> \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)
<=> \(\left(2x-1\right)^3=0\)
<=> 2 x - 1 = 0
<=> x = 1/2.
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
1, \(5x\left(x-1\right)=x-1\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
2, \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Rightarrow24x^2-10x-24x^2+8x=30\) \(\Rightarrow-2x=30\Rightarrow x=-15\)
3, \(3x\left(3-2x\right)+6x\left(x-1\right)=15\) \(\Rightarrow9x-6x^2+6x^2-6x=15\Rightarrow3x=15\Rightarrow x=5\)
4, \(x\left(x-3\right)+x-3=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
(*)\(\left(2x-3\right)^2-\left(3x-2\right)^2=5x\left(2-x\right)\)
\(\Leftrightarrow\left(2x-3+3x+2\right)\left(2x-3-3x-2\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(-x-5\right)-5x\left(2-x\right)=0\)
\(\Leftrightarrow-5x^2-25x+x+5-10x+5x^2=0\)
\(\Leftrightarrow-34x=-5\)
\(\Rightarrow x=\dfrac{34}{5}\)
Đề câu 1 bị sao đó.
(*)\(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 = 0
Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0
2) <=> ( x - 1 )3 = 0 <=> x = 1
3) <=> ( x - 2 )3 = 0 <=> x = 2
4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2