Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |2x-1|=5-x
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b)|2x-1|>2 <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
c)\(\Leftrightarrow-5< 3x-7< 5\) <=>2/3<x<4
Ta có :
\(xy=x:y\)
\(\Rightarrow y^2=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=1\\y=-1\end{array}\right.\)
(+) y = 1
\(\Rightarrow x+1=x\) ( vô lý )
(+) \(y=-1\)
\(\Rightarrow x=\frac{1}{2}\) ( Nhận )
Vậy \(\left(x;y\right)=\left(\frac{1}{2};-1\right)\)
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)=>(x−1)2+(y−2)2=0
Dấu "=" xảy ra khi (x−1)2=(y−2)2=0
(x-1)2=0=>x-1=0=>x=1
(y-2)2=0=>y-2=0=>y=2
Vậy x=1 và y=2
a: x+1>0
=>x>-1
b: -2x-3<0
=>-2x<3
=>x>-3/2
c: 4x+5>0
=>4x>-5
=>x>-5/4
d: -7x-3<0
=>-7x<3
=>x>-3/7
k: 3x+7>0
=>3x>-7
=>x>-7/3
l: -4x-1<0
=>-4x<1
=>x>-1/4
a) Ta có:
\(\left|3x+1\right|>4\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x+1>4\\3x+1< -4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x>3\\3x< -5\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>1\\x< -\frac{5}{3}\end{array}\right.\)
Vậy với \(\left[\begin{array}{nghiempt}x>1\\x< -\frac{5}{3}\end{array}\right.\) và \(x\in Z\) thì \(\left|3x+1>4\right|\).
a)\(\left|3x+1\right|>4\Leftrightarrow3x+1>4\) hoặc 3x+1<-4
\(\Leftrightarrow3x>3\) hoặc 3x<-5
\(\Leftrightarrow x>1\) hoặc \(x< -\frac{5}{3}\)
b)Xét x\(\ge4\)4\(\Rightarrow-\left(4-x\right)+2x=3\)
\(\Rightarrow-4+x+2x=3\)
\(\Rightarrow3x=7\)
\(\Rightarrow x=\frac{7}{3}\left(< 4\right)\)
Xét x<4\(\Rightarrow4-x+2x=3\)
\(\Rightarrow4+x=3\)
\(\Rightarrow x=-1\)(thỏa)
Vậy x=-1
|3x - 2| - x > 1
+ Với \(x< \frac{2}{3}\) thì |3x - 2| - x = 2 - 3x - x = 2 - 4x > 1
=> 4x < 1
=> \(x< \frac{1}{4}\), thỏa mãn \(x< \frac{2}{3}\)
+ Với \(x\ge\frac{2}{3}\) thì |3x - 2| - x = 3x - 2 - x = 2x - 2 > 1
=> 2x > 3
=> \(x>\frac{3}{2}\), thỏa mãn \(x\ge\frac{2}{3}\)
Vậy \(\left[\begin{array}{nghiempt}x< \frac{1}{4}\\x>\frac{3}{2}\end{array}\right.\) thỏa mãn đề bài
Ta có:
\(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>x+1\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2>x+1\\3x-2< -\left(x+1\right)\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3+x+1>x+1\\4x+\left(-x\right)-1-1< -x-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3>0\\4x-1< 0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x>3\\4x< 1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>\frac{3}{2}\\x< \frac{1}{4}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x>\frac{3}{2}\\x< \frac{1}{4}\end{array}\right.\)