Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{9}{15}-\frac{10}{15}=\frac{-1}{15}\)
\(x=\frac{-1}{15}.\frac{1}{3}\)
\(x=\frac{-1}{45}\)
Vậy x = \(\frac{-1}{45}\)
c) \(\left|2x-1\right|+1=4\)
\(\left|2x-1\right|=4-1=3\)
2x-1 = 3 ; -3
TH1: 2.x - 1 = 3
2.x = 3 + 1 = 4
x = 4 : 2 = 2
TH2: 2.x - 1 = -3
2.x = -3 + 1 = -2
x = -2 : 2 = -1
Vậy x \(\in\){ 2 ; -1 }
Ngại làm ấn máy ==
Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.
a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)
\(\Rightarrow3x+1>0\) và \(2x-4< 0\)
hoặc \(3x+1< 0\) và \(2x-4>0\)
+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)
\(2x-4< 0\Rightarrow x< 2\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)
+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)
\(2x-4>0\Rightarrow x>2\left(4\right)\)
Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)
\(\Rightarrow\) vô lý.
Vậy \(\frac{-1}{3}< x< 2.\)
b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)
\(\Rightarrow-x-5>0\) và \(2x+1>0\)
hoặc \(-x-5< 0\) và \(2x+1< 0\)
+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)
\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)
Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)
+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)
\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)
Từ (7) và (8) suy ra \(x< -5\)
Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).
d)\(\left|x+3\right|< 5\)
\(\Rightarrow-5< x+3< 5\)
\(\Rightarrow-8< x< 2\)
a: x+1>0
=>x>-1
b: -2x-3<0
=>-2x<3
=>x>-3/2
c: 4x+5>0
=>4x>-5
=>x>-5/4
d: -7x-3<0
=>-7x<3
=>x>-3/7
k: 3x+7>0
=>3x>-7
=>x>-7/3
l: -4x-1<0
=>-4x<1
=>x>-1/4
|3x - 2| - x > 1
+ Với \(x< \frac{2}{3}\) thì |3x - 2| - x = 2 - 3x - x = 2 - 4x > 1
=> 4x < 1
=> \(x< \frac{1}{4}\), thỏa mãn \(x< \frac{2}{3}\)
+ Với \(x\ge\frac{2}{3}\) thì |3x - 2| - x = 3x - 2 - x = 2x - 2 > 1
=> 2x > 3
=> \(x>\frac{3}{2}\), thỏa mãn \(x\ge\frac{2}{3}\)
Vậy \(\left[\begin{array}{nghiempt}x< \frac{1}{4}\\x>\frac{3}{2}\end{array}\right.\) thỏa mãn đề bài
Ta có:
\(\left|3x-2\right|-x>1\)
\(\Rightarrow\left|3x-2\right|>x+1\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2>x+1\\3x-2< -\left(x+1\right)\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3+x+1>x+1\\4x+\left(-x\right)-1-1< -x-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3>0\\4x-1< 0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x>3\\4x< 1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>\frac{3}{2}\\x< \frac{1}{4}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x>\frac{3}{2}\\x< \frac{1}{4}\end{array}\right.\)
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
Ai chẳng biết chuyển vế đổi dấu :v
a) \(x-7=4x+10\)
\(x-4x=10+7\)
\(-3x=17\)
\(x=\dfrac{17}{-3}\)
Vậy \(x=\dfrac{17}{-3}\)
b) \(2x+5=-3x+7\)
\(2x+3x=7-5\)
\(5x=2\)
\(x=\dfrac{2}{5}\)
Vậy \(x=\dfrac{2}{5}\)
c) \(x-\left(3x+7\right)=6x-1\)
\(x-3x-7=6x-1\)
\(-2x-7=6x+1\)
\(-7-1=6x+2x\)
\(-8=8x\)
\(x=\dfrac{-8}{8}=-1\)
Vậy \(x=-1\)
d) \(x+\left(5x-1\right)=15\)
\(x+5x-1=15\)
\(6x=15+1\)
\(6x=16\)
\(x=\dfrac{16}{6}=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\)
1 , x - 7 = 4x + 10
x - 4x = 10 + 7
- 3x = 17
x = 17 : ( - 3 )
x = \(\dfrac{-17}{3}\)
2 , 2x + 5 = -3x + 7
2x + 3x = 7 -5
5x = 2
x = 2 : 5
x =\(\dfrac{2}{5}\)
3 , x - ( 3x + 7 ) = 6x - 1
x - 3x - 7 = 6x - 1
x - 3x -6x = -1 +7
-8x = 6
x = 6 : ( -8 )
x = \(\dfrac{-3}{4}\)
4 , x + ( 5x -1 ) = 15
x + 5x - 1 = 15
x + 5x = 15 + 1
6x = 16
x = 16 : 6
x = \(\dfrac{8}{3}\)
5 , / x + 1 / = / 2x - 5 /
TH 1 : x + 1 = 2x - 5
x - 2x = -5 -1
- x = -4
= > x = 4
TH 2 : -x -1 = -2x + 5
-x + 2x = 5 + 1
x = 6
6 , / 3x + 8 / - / x -10 / = 0
3x + 8 - x + 10 = 0
3x - x = 0 - 10 - 8
2 x = -18
x = -18 : 2
x = - 9
A,th1: x-1<0
x<1
x+2>0
x>-2
th2: x-1>0
x>1
x+2<0
x<-2
b, /x-2012/=x+2015
th1: x-2012=x+2015
0x=4027(vô lí)
0 tìm được x
th2: x-2012=-x-2015
2x=-3
x=-3/2
c,/x-1/=5-2x
th1: x-1=5-2x
3x=6
x=2
th2: x-1=2x-5
x=4
**** cho mk nha
a) |2x-1|=5-x
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b)|2x-1|>2 <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
c)\(\Leftrightarrow-5< 3x-7< 5\) <=>2/3<x<4