Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= 2.|5x-3|-2x=14
=>|5x-3|-x=7 (mình chia tất cả cho 2)
nếu 5x nhỏ hơn hoặc bằng 3
=>|5x-3|=3-5x
thay vào A = 3-5x-2x=7
=>3-7x=7
=>7x=-4
=>x=\(\frac{-4}{7}\)
Nếu 5x lớn hơn 3 =>|5x-3|=5x-3
thay vào A=5x-3-2x=7
=>3x-3=7
=>3x=10
=>x=\(\frac{10}{3}\)
Vậy ...
2|5x-3|-2x=14 suy ra 2|5x-3|=14+2x suy ra |5x-3|=7-x suy ra 5x-3=7-x hoặc 5x-3=-7+x
- 5x-3=7-x suy ra 5x+x=7+3 suy ra 6x=10 suy ra x= 5/3
- 5x-3=-7+x suy ra 5x-x=-7+3 suy ra 4x=-4 suy ra x=-1
vây x = 5/3 hoặc x=-1
1,
Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)
\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)
Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
2,
TH1: \(x\ge\frac{3}{5}\)
<=> 2(5x-3)-2x=14
<=> 10x-6-2x=14
<=>8x-6=14
<=>8x=20
<=>x=5/2 (thỏa mãn)
TH2: x < 3/5
<=> 2(3-5x)-2x=14
<=>6-10x-2x=14
<=>6-12x=14
<=>12x=-8
<=>x=-2/3 (thỏa mãn)
Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
1)
\(\left|2x-3\right|=2x-3\)
\(\Leftrightarrow\) \(2x-3\ge0\)
\(\Leftrightarrow\) \(2x\ge3\)
\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)
2)
\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)
\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)
\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)
\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)
3)
\(\left|3-x\right|+\left|2y-5\right|\le0\) mà \(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)
nên \(\left|3-x\right|+\left|2y-5\right|=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)
Tôi giải phần a, b thôi nhé.
Giải:
a, \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow}x=\frac{3}{2};x=\frac{1}{3}\)
b, \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=3-4x\\2+3x=4x-3\end{cases}}\Leftrightarrow x=\frac{1}{7};x=5\)
1, \(\left|\frac{3}{2}x-1\right|-2x=1\Rightarrow\left|\frac{3}{2}x-1\right|=1+2x\)
Vì \(\left|\frac{3}{2}x-1\right|\ge0\Leftrightarrow1+2x\ge0\Leftrightarrow x\ge\frac{-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-1=1+2x\\\frac{3}{2}x-1=-1-2x\end{cases}\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-2x=1+1\\\frac{3}{2}x+2x=-1+1\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{-1}{2}x=2\\\frac{7}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-4\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)
Vậy x = 0
2,3 tương tự 1
4, Vì \(\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\Rightarrow x\ge0\)
Ta có: \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\) (1)
- Nếu x = 0 thì 0 = 0 thỏa mãn (1)
- Nếu \(x\ne0\) thì \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)
Vì \(x\ge0\Rightarrow x\in\left\{0;\frac{1}{2};\frac{3}{2}\right\}\)
Vậy...
x= 5/2;
x= -2/3
x = 5/2;
x= -2/3