Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)
\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)
Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
2,
TH1: \(x\ge\frac{3}{5}\)
<=> 2(5x-3)-2x=14
<=> 10x-6-2x=14
<=>8x-6=14
<=>8x=20
<=>x=5/2 (thỏa mãn)
TH2: x < 3/5
<=> 2(3-5x)-2x=14
<=>6-10x-2x=14
<=>6-12x=14
<=>12x=-8
<=>x=-2/3 (thỏa mãn)
Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
1)
\(\left|2x-3\right|=2x-3\)
\(\Leftrightarrow\) \(2x-3\ge0\)
\(\Leftrightarrow\) \(2x\ge3\)
\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)
2)
\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)
\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)
\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)
\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)
3)
\(\left|3-x\right|+\left|2y-5\right|\le0\) mà \(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)
nên \(\left|3-x\right|+\left|2y-5\right|=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)
Tôi giải phần a, b thôi nhé.
Giải:
a, \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow}x=\frac{3}{2};x=\frac{1}{3}\)
b, \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=3-4x\\2+3x=4x-3\end{cases}}\Leftrightarrow x=\frac{1}{7};x=5\)
Đặt A= 2.|5x-3|-2x=14
=>|5x-3|-x=7 (mình chia tất cả cho 2)
nếu 5x nhỏ hơn hoặc bằng 3
=>|5x-3|=3-5x
thay vào A = 3-5x-2x=7
=>3-7x=7
=>7x=-4
=>x=\(\frac{-4}{7}\)
Nếu 5x lớn hơn 3 =>|5x-3|=5x-3
thay vào A=5x-3-2x=7
=>3x-3=7
=>3x=10
=>x=\(\frac{10}{3}\)
Vậy ...
2|5x-3|-2x=14 suy ra 2|5x-3|=14+2x suy ra |5x-3|=7-x suy ra 5x-3=7-x hoặc 5x-3=-7+x
vây x = 5/3 hoặc x=-1