K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Nguyễn Huy Tú Nguyễn Thanh Hằng

7 tháng 8 2017

1)

\(\left|2x-3\right|=2x-3\)

\(\Leftrightarrow\) \(2x-3\ge0\)

\(\Leftrightarrow\) \(2x\ge3\)

\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)

2)

\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)

\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)

\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)

\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)

3)

\(\left|3-x\right|+\left|2y-5\right|\le0\)\(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)

nên \(\left|3-x\right|+\left|2y-5\right|=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)

12 tháng 9 2017

\(a,\left|2x+3\right|+x=4\)

\(\Rightarrow\left|2x+3\right|=4-x\)

Điều kiện :\(4-x\ge0\Rightarrow x\le4\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=4-x\\2x+3=x-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+x=4-3\\2x-x=-4-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=1\\x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-7\end{matrix}\right.\)

Xét cả 2 trường hợp trên đều thỏa mãn điều kiện

Vậy ...

19 tháng 9 2017

cau nay chac chan duoc gp

13 tháng 1 2018

a,

\(\left(\dfrac{3}{5}x-\dfrac{2}{3}x-x\right)\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x=\dfrac{-\dfrac{5}{21}}{\dfrac{1}{7}}=-\dfrac{5}{3}\)

\(\Rightarrow x=\dfrac{-\dfrac{5}{3}}{-\dfrac{16}{15}}=\dfrac{25}{16}\)

b,

\(\left(5x-1\right)\left(2x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

c,

\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\)

\(\Rightarrow5\left|x+1\right|^2=180\)

\(\Rightarrow\left|x+1\right|^2=36\)

\(\left|x+1\right|\ge0\)

=> x + 1 = 6 <=> x = 7

1.

a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)

\(\dfrac{1}{3}x^6y^5z\)

Deg=12

Mấy câu kia tương tự nha cố gắng lên!

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

a: \(=\dfrac{2}{5}x^2y^2-2x^2y+4xy^2\)

b: \(=x^2y^2+5xy-xy-5=x^2y^2+4xy-5\)

c: \(=-10x^5+5x^3-2x^2\)

d: \(=x^3-2x^2y+3x^2y-6xy^2=x^3+x^2y-6xy^2\)