K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

\(a,x^2-9=2\left(x+3\right)^2\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-2\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\-x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

=.= hk tốt!!

30 tháng 5 2019

\(b,4x^2-4x+1=\left(5-x\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(5-x\right)^2=0\)

\(\Leftrightarrow\left(2x-1+5-x\right)\left(2x-1-5+x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

=.= hk tốt!!

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

12 tháng 7 2019

#)Giải :

Bài 1 :

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Leftrightarrow144x^2+216=144x^2-480x+319\)

\(\Leftrightarrow696x=319\)

\(\Leftrightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

a) 9(4x + 3)2 = 16(3x - 5)2

=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0

=> (12x + 9)2 - (12x - 20)2 = 0

=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0

=> 29.(24x - 11) = 0

=> 2x - 11 = 0

=> 2x = 11

=>  x = 11 : 2 = 11/2

b) (x3 - x2)2 - 4x2 + 8x - 4 = 0

=> (x3 - x2)2 - (2x - 2)2 = 0

=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0

=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0

=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0

=> (x2 - 2)(x2 + 2)(x - 1)2 = 0

=> x2 - 2 = 0

hoặc : x2 + 2 = 0

hoặc : (x - 1)2 = 0

=> x2 = 2

 hoặc : x2 = -2 (vl)

hoặc : x - 1 = 0

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

hoặc : x = 1

Vậy ...

c) x + x4 + x3 + x2 + x + 1 = 0

=> x4(x +1) + x2(x + 1) + (x + 1) = 0

=> (x4 + x2 + 1)(x + 1) = 0

=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)\(\forall\)x; x2 \(\ge\)\(\forall\)x => x4 + x2 \(\ge\)\(\forall\)x)

=> x = -1

12 tháng 7 2019

\(x^5+x^4+x^3+x^2+x+1=0\Leftrightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+x+1=\left(x^4+x^2+1\right)\left(x+1\right)=0maf:x^4+x^2+1>\left(x^2+\frac{1}{2}\right)\ge0\Rightarrow x+1=0\Leftrightarrow x=-1\)

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

25 tháng 7 2017

\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)

\(\Leftrightarrow x^3+1-x^3+5x=71\)

\(\Leftrightarrow5x=71-1\)

\(\Leftrightarrow5x=70\)

\(\Leftrightarrow x=70:5=14\)

\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)

\(\Leftrightarrow20x^2+14x=0\)

\(\Leftrightarrow x\left(20x+14\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)

25 tháng 7 2017

a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71

          <=>x^3 +1 -x^3 +5x=71

         <=>5x=70

         <=>x=14

b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0

        <=>[ (2x-3)^3  +27)]  -  [ 8x(x-1)^2  -4x(4x+1)]=0

       <=> (2x-3+3)[ (2x-3)^2 - (2x-3).3  +3^2]   - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0

       <=>2x( 4.x^2 - 12x +9 - 6x +9 +9)   -  2x( 4.x^2 -8x+4 -8x -2)=0

       <=>2x(4.x^2  -18x +27)  -  2x(4.x^2 -16x +2)=0

      <=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0

     <=>2x(25-2x)=0

<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2

9 tháng 7 2019

Bài 1:tìm x ,biết:

a) (2x - 1)(3x + 2) - 6x(x + 1) = 0

\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)

\(\Leftrightarrow-5x=2\)

\(\Leftrightarrow x=\frac{-2}{5}\)

b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)

\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)

\(\Leftrightarrow-10x=-4\)

\(\Leftrightarrow x=\frac{2}{5}\)

c) \(4x^2-1=2\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)

\(=1.\left(2x-1\right)\)

c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)

\(=\left(x-4-2y\right)\left(x-4+2y\right)\)

d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)

\(=\left(3x-2-y\right)\left(3x-2+y\right)\)

e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)

\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)

\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)