Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-2\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\-x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
=.= hk tốt!!
\(b,4x^2-4x+1=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(5-x\right)^2=0\)
\(\Leftrightarrow\left(2x-1+5-x\right)\left(2x-1-5+x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
=.= hk tốt!!
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10