Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x+1=9x
3x+1=(32)x
3x+1=32x
=>x+1=2x
x-2x=-1
-x=-1
=>x=1
b)32x-1=243
32x-1=35
=>2x-1=5
2x=6
x=3
Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
4) \(2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)
\(\Rightarrow2.3^x+3^{x-1}=567\)
\(\Rightarrow7.3^{x-1}=567\)
\(\Rightarrow3^{x-1}=567\div7\)
\(\Rightarrow3^{x-1}=81\)
\(\Rightarrow3^{x-1}=3^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=4+1\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
a) \(2^{x+1}\times3^x-6^x=216\)
\(2^{x+1}\times3^x-2^x\times3^x=216\)
\(2^x\times3^x\times\left(2^1-1\right)=216\)
\(2^x\times3^x=216\)
\(6^x=6^3\Rightarrow x=3\)
b) \(9^x+3^x=702\)
\(3^x\times3^x+3^x=702\)
\(3^x\times\left(3^x+1\right)=26\times27\)
=> 3x = 26 => x thuộc tập hợp rỗng
4 x 3x-1 + 2 x 3x+2 = 4 x 36 +2 x 39
=> 3x-1 = 36 => x - 1 = 6 => x = 6 + 1 = 7
=> 3x+2 = 39 => x + 2 = 9 => x = 9 - 2 = 7
Vậy x = 7
\(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(\Rightarrow2.3^{x-1}\left(2+27\right)=2.3^6\left(2+27\right)\)
\(\Rightarrow2.3^{x-1}=2.3^6\)
\(\Rightarrow x-1=6\Leftrightarrow x=7\)
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{3^n}{27^n}=\frac{1}{9}\)
\(\Rightarrow\left(\frac{3}{27}\right)^n=\frac{1}{9}\)
\(\Rightarrow\left(\frac{1}{9}\right)^n=\frac{1}{9}\)
\(\Rightarrow n=1\)
\(3^{x+1}=9^x\\ \Leftrightarrow3^{x+1}=3^{2x}\\ \Leftrightarrow x+1=2x\\ \Leftrightarrow x=1\)
\(VP=9^x=\left(3^2\right)^x=3^{2x}\\ Vì:3^{x+1}=9^x=3^{2x}\\ Nên:x+1=2x\\ \Rightarrow2x-x=1\\ Vậy:x=1\)