Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(24=2^3.3\)
\(84=2^2.3.7\)
\(180=2^2.3^2.5\)
\(\RightarrowƯCLN\left(24;84;180\right)=2^2.3=12\)
b) \(24=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(24;36\right)=2^2.3=12\)
g) \(56=2^3.7\)
\(140=2^2.5.7\)
\(\RightarrowƯCLN\left(56;140\right)=2^2.7=28\)
h) \(12=2^2.3\)
\(14=2.7\)
\(8=2^3\)
\(20=2^2.5\)
\(\RightarrowƯCLN\left(12;14;8;20\right)=2\)
d) \(6=2.3\)
\(8=2^3\)
\(18=2.3^2\)
\(\RightarrowƯCLN\left(6;8;18\right)=2\)
k) \(7=7\)
\(9=3^2\)
\(12=2^2.3\)
\(21=3.7\)
\(\RightarrowƯCLN\left(7;9;12;21\right)=1\)
24 = 23.3; 36 = 24.34; 60 = 22.3.5
ƯCLN( 24; 36; 60) = 22.3 = 12
12 = 22.3; 15 = 3.5; 10 = 2.5
ƯCLN(12; 15; 10) = 1
24 = 23.3; 16 = 24; 8 = 23
ƯCLN(24; 16; 8) = 23
9 = 32; 81 = 34
ƯCLN( 9; 81) = 9
11 = 11; 15 = 3.5
ƯCLN( 11; 15) = 1
1 = 1; 10 = 2.5
ƯCLN(1; 10) = 1
150 = 2.3.52; 84 = 22.3.7
ƯCLN( 150; 84) = 6
a) ƯCLN ( 84, 126, 210 )
84 = 22 . 3 . 7
126 = 2 . 32 . 7
210 = 2 . 3 . 5 . 7
ƯCLN ( 84, 126, 210 ) = 2 . 3 . 7 = 42
➤ ƯCLN ( 84, 126, 210 ) = 42
b) BCNN ( 36, 45, 63 )
36 = 22 . 32
45 = 32 . 5
63 = 32 . 7
BCNN ( 36, 45, 63 ) = 22 . 32 . 5 . 7 = 1260
BCNN ( 36, 45, 63 ) = 1260
1.
Gọi 2 số tự nhiên bất kì là a ; b ( a ; b ϵ N* ) \(\left(1\right)\)
Theo đầu bài ta có : \(\left(a;b\right)=36\)
→ a chia hết cho 36 và b chia hết cho 36
→ \(a=36m\) và \(b=36n\)
Mà a + b = 432 → \(36m+36n=432\)
→ \(m+n=12\) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(11\) | \(7\) |
\(n\) | \(1\) | \(5\) |
\(a\) | \(396\) | \(252\) |
\(b\) | \(36\) | \(180\) |
Vậy \(\left(a;b\right)=\left\{\left(396;36\right);\left(36;396\right);\left(252;180\right);\left(180;252\right)\right\}\)
2.
Gọi 2 số cần tìm là a và b ( a , b ϵ N )
Theo đầu bài ta có : \(\left(a,b\right)=6\)
→ \(a=6m\) và \(b=6n\) ( m;n ϵ N và (m;n)= 1) \(\left(1\right)\)
Lại có : \(a+b=66\)
→ \(6m+6n=66\)
→ \(m+n=11\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(10\) | \(9\) | \(8\) | \(7\) | \(6\) |
\(n\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(a\) | \(60\) | \(54\) | \(48\) | \(42\) | \(36\) |
\(b\) | \(6\) | \(12\) | \(18\) | \(24\) | \(30\) |
Vì 1 trong 2 số chia hết cho 5 → Ta có : a = 60; b = 6
hoặc a = 36 ; b = 30
36 = 22.32
84 = 22.3.7
Ta thấy 2 và 3 là các thừa số nguyên tố chung của 36 và 84. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1 nên
ƯCLN(36, 84) = 22.3 = 12.