K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

 Lên google search đi

Ta có:

c=a^b+b^a\ge2^2+2^2>2c=ab+ba22+22>2

=> c là số lẻ

=> trong a,b phải có 1 số chẵn

Xét a chẵn => a = 2

=> 2b + b2 = c

Xét b > 3 => b2 chia 3 dư 1

=> b2 chia 3 dư 1

2b chia 3 dư 2

=> 2b + b2 chia hết cho 3

=> c chia hết cho 3

=> c = 3

mà ab + ba = c > 3 ( loại c = 3)

Xét b = 3 => c = 17

Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)

30 tháng 3 2020

*)\(b^2+c^2=a^2\)

\(\Leftrightarrow b^2=a^2-c^2\)

\(\Leftrightarrow b=\sqrt{a^2-c^2}\)

Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)

\(\Leftrightarrow a^2>2c^2\)(luôn đúng)

=> c<b

*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)

30 tháng 8 2020

Đặt \(\hept{\begin{cases}x=a+b\\y=b+2c\\z=c+2a\end{cases}\Rightarrow x+y+z=3a+2b+3c}\)

Khi đó biểu thức đã cho trở thành :

\(\left(x+y+z\right)^3=x^3+y^3+z^3+450\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(y+z\right)=x^3+y^3+z^3+450\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=90\)

\(\Leftrightarrow\left(a+2b+2c\right)\left(b+3c+2a\right)\left(3a+c+b\right)=90\) 

Phân tích 90 thành tích của 3 số nguyên dương rồi bạn tìm được \(a,b,c\) tương ứng.

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

22 tháng 12 2017

Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu b tại đây nhé.

27 tháng 12 2017

bạn tham khảo ý b nhe