K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Đặt \(\hept{\begin{cases}x=a+b\\y=b+2c\\z=c+2a\end{cases}\Rightarrow x+y+z=3a+2b+3c}\)

Khi đó biểu thức đã cho trở thành :

\(\left(x+y+z\right)^3=x^3+y^3+z^3+450\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(y+z\right)=x^3+y^3+z^3+450\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=90\)

\(\Leftrightarrow\left(a+2b+2c\right)\left(b+3c+2a\right)\left(3a+c+b\right)=90\) 

Phân tích 90 thành tích của 3 số nguyên dương rồi bạn tìm được \(a,b,c\) tương ứng.

20 tháng 10 2019

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

25 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{matrix}\right.\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3\left(x+y\right)\left(x+z\right)\left(x+z\right)=24\)

\(\Rightarrow3\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)

Do đó ta có \(đpcm\)

Chúc bạn học tốt!

20 tháng 11 2017

nhìn cách làm là biết của web khác.You ko nên zô phần câu hỏi tương tự,qua web khác đọc rồi lại viết ngay về web mk.Có lòng thì cho người ta cái link.Vì GP mà ko bik phân biệt nx r........

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:
Đặt \((3a+b-c,3b+c-a,3c+a-b)=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} 3a+3b+3c=x+y+z\\ a+2b=\frac{x+y}{2}\\ b+2c=\frac{y+z}{2}\\ c+2a=\frac{x+z}{2}\end{matrix}\right.\)

Bài toán trở thành:

Với các số thực $x,y,z$ thỏa mãn \((x+y+z)^3=24+x^3+y^3+z^3\)

CMR: \((x+y)(y+z)(x+z)=8\)

------------------------------------------------

Áp dụng HĐT \(m^3+n^3=(m+n)^3-3mn(m+n)\) ta có:

\((x+y+z)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y)^3-3xy(x+y)+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y+z)^3-3xy(x+y)-3z(x+y)(x+y+z)\)

\(\Leftrightarrow 3(x+y)[z(x+y+z)+xy]=24\)

\(\Leftrightarrow (x+y)[z(y+z)+x(z+y)]=8\)

\(\Leftrightarrow (x+y)(z+x)(z+y)=8\) (đpcm)

vai trò a,b,c hoán vị vòng quanh. không mất tính tổng quát. giả sử a là số lớn nhất.

\(a\ge b>0.\)

nên b \(\ge\)a

ta có \(a\ge b\ge a\)

vậy a=b

tuong tự ta có a=c

vậy a=b=c=1

do đó M=a3+b2+c190=3

27 tháng 10 2020

Đề True ??

30 tháng 10 2020

lời giải của 1 bạn trên "Diễn đàn toán học" . mình trích nguyên bài làm của bạn ấy luôn nha

Giả định \(a=x;b=y;c=z\)

Áp dụng AM-GM ta có : 

\(2\left(a^3+a^3+x^3\right)\ge6xa^2\)

\(3\left(b^3+b^3+y^3\right)\ge9yb^2\)

\(4\left(c^3+c^3+z^3\right)\ge12zc^2\)

Cộng 3 bất đẳng thức trên lại theo vế ta được 

\(2P+2x^3+3y^3+4z^3\ge6xa^2+9yb^2+12zc^2\)

Ta tìm x,y,z thỏa mãn \(\hept{\begin{cases}\frac{6x}{1}=\frac{9y}{2}=\frac{12z}{3}\\x^2+2y^2+3z^2=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{6}{\sqrt{407}}\\y=\frac{8}{\sqrt{407}}\\z=\frac{9}{\sqrt{407}}\end{cases}}\)

\(\Rightarrow P\ge\frac{12}{\sqrt{407}}\)

Vậy \(P_{min}=\frac{12}{\sqrt{407}}\Leftrightarrow a=\frac{6}{\sqrt{407}};b=\frac{8}{\sqrt{407}};c=\frac{9}{\sqrt{407}}\) 

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c