Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
áp dụng BĐT bunhia... ta có
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
\(\Rightarrow a+2b\le3c\)
áp dụng cosi ta có
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)
dấu = xảy ra khi a=b=c
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
Đề True ??
lời giải của 1 bạn trên "Diễn đàn toán học" . mình trích nguyên bài làm của bạn ấy luôn nha
Giả định \(a=x;b=y;c=z\)
Áp dụng AM-GM ta có :
\(2\left(a^3+a^3+x^3\right)\ge6xa^2\)
\(3\left(b^3+b^3+y^3\right)\ge9yb^2\)
\(4\left(c^3+c^3+z^3\right)\ge12zc^2\)
Cộng 3 bất đẳng thức trên lại theo vế ta được
\(2P+2x^3+3y^3+4z^3\ge6xa^2+9yb^2+12zc^2\)
Ta tìm x,y,z thỏa mãn \(\hept{\begin{cases}\frac{6x}{1}=\frac{9y}{2}=\frac{12z}{3}\\x^2+2y^2+3z^2=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{6}{\sqrt{407}}\\y=\frac{8}{\sqrt{407}}\\z=\frac{9}{\sqrt{407}}\end{cases}}\)
\(\Rightarrow P\ge\frac{12}{\sqrt{407}}\)
Vậy \(P_{min}=\frac{12}{\sqrt{407}}\Leftrightarrow a=\frac{6}{\sqrt{407}};b=\frac{8}{\sqrt{407}};c=\frac{9}{\sqrt{407}}\)