Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(\frac{1}{5}<1\)
\(\frac{15}{2}<8\)
=> a thuộc các số nguyên từ 1 đến 8
Vậy a \(\in\) {1;2;3;4;5;6;7;8}
ta có \(\frac{1}{5}\)=0,2
\(\frac{15}{2}\)=7,5
ta có 0,2<a<7,5
mà a là số nguyên nên a thuộc {1;2;3;4;5;6;7}
(x-1)(x+5) / (x-1)(2x+6) = 1
=> (x-1)(x+5) = (x-1)(2x+6)
=> \(x^2+5x-x-5=2x^2+6x-2x-6\)
=> \(x^2-2x^2+4x-4x-5+6=0\)
=> \(-x^2+1=0\)
=> \(-x^2=-1\)
=> \(x^2=1\)
=> x thuộc {-1; 1}
\(\frac{\left(x-1\right)\left(x+5\right)}{\left(x-1\right)\left(2x+6\right)}\)
đề vầy à
|-17-x|=7
=>-17-x=+7
TH1:
-17-x=7
x=-17-7
x=-24
TH2:
-17-x=-7
x=-17-(-7)
x=-10
Vậy :x=-24 hoặc -10
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0
hello Ngọt
Ta có:
a x 0,56<4
Nếu a=8 thì 8 x 0,56=4,48>(loại)
Nếu a =7 thì 7x0,56=3,92<4(chọn)
Vì a là giá trị lớn nhất nên a=7
Chắc thế ngọt ak!Linh cũng ko chắc vì Linh chưa đc chấm mà!
Cộng các đẳng thức ở (2) ta được
Do P 1 = 1
Theo đề, ta có
Chọn A.
\(a.\left(a^2+3a+2\right)=6^{2005}+1\)
\(\Rightarrow a^3+3a^2+2a=6^{2005}+1\)
TH1: a là số lẻ
\(\Rightarrow a^3\) là số lẻ
\(3a^2\) là số lẻ
\(2a\) là số chẵn
\(\Rightarrow a^3+3a^2+2a\text{ ⋮ }2\)
Mà \(6^{2005}+1\) không chia hết cho 2
\(\Rightarrow\)Vô lý
TH2: a là số chẵn
\(\Rightarrow a^3\text{ ⋮}2\)
\(3a^2\text{ ⋮}2\)
Mà \(2a\text{ ⋮}2\)
\(\Rightarrow a^3+3a^2+2a\text{ ⋮}2\)
Mà \(6^{2005}+1\) không chia hết cho 2
Vậy không tồn tại a thỏa mãn điều kiện trên.
Nhiều số lắm bạn, ngồi liệt kê đau đầu luôn.
1/5=0,2;15/2=7/5
ta có 0,2<a<7,5
mà a là số nguyên suy ra a thuộc {1;2;3;4;5;6;7}