Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ A= 71+72+73+74+75+76\(⋮\)57
Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)
=7x(1+7+72)+74x(1+7+72)
=7x57+74x57
=57x(7+74)\(⋮\)57
4n+17
Vậy A \(⋮\)57
Phần 2 thiếu đề bài
3/ 4n+17\(⋮\)2n+3
=>4n+17-2x(2n+3)\(⋮\) 2n+3
=>4n+17-4n-6\(⋮\) 2n+3
=>11\(⋮\)2n+3
=>2n+3 \(\varepsilon\)Ư(11)
mà Ư(11) ={1;11}
Vì 2n+3 là số tự nhiên =>2n+3 =11
=>2n=11-3
=>2n=8
=>n=8 :2
=> n=4
Vậy n=4 thì ...
4/ 9n+17 \(⋮\)3n+2
=>9n+17-3x(3n+2)\(⋮\)3n+2
=>9n+17-9n-6\(⋮\)3n+2
=>11\(⋮\)3n+2
=>3n+2 \(\varepsilon\)Ư(11)
mà Ư(11)={1;11}
Vì 3n+2 là số tự nhiên => 3n+2>2
=>3n+2 =11
=>3n=11-2
=>3n=9
=>n=9:3
=>n=3
Vậy n=3 thì ...
Ta có
M=3 +32+33+....+399+3100
=> \(.M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
=> \(M=12\left(1\right)+12\left(9\right)+...+12\left(...\right)\)
=> M chia hết cho 12 ( cái cuối bạn tự tính đi mình ko muốn tính :) )
cái còn lại tự làm tương tự thôi
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
Ta có:3n+2+2n+3+3n+2n+1
=3n.(32+1)+2n.(23+2)
=3n.10+2n.10
=(3n+2n).10 chia hết cho 10
Vậy...................
n + 4 ⋮ n - 1 (1 ≠ n \(\in\) N)
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
n - 1 | - 5 | -1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
1 ≠ n \(\in\) N | loại | nhận | nhận | nhận |
Theo bảng trên ta có n \(\in\) {0; 2; 6}
Vậy n \(\in\) {0; 2; 6}