Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
Với \(n=0\Rightarrow n^4+n^3+n^2=0=0^2\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
\(\Rightarrow\)Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương.
Có \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương
Vậy ...
Đặt \(2^4+2^7+2^n=a^2\) (a \(\in\) N)
\(\iff\) \(\left(2^4+2^7\right)+2^n=a^2\)
\(\iff\)\(2^4.\left(1+2^3\right)+2^n=a^2\)
\(\iff\)\(2^4.3^2+2^n=a^2\)
\(\iff\)\(\left(2^2.3\right)^2+2^n=a^2\)
\(\iff\) \(12^2+2^n=a^2\)
\(\iff\)\(2^n=a^2-12^2\)
\(\iff\)\(2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\left(2\right)\) \(;a+12=2^p\left(1\right)\)
Gỉa sử :p>q ,p,q \(\in\) N
Lấy (1)-(2) vế với vế ta được \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\implies\) \(\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\implies\)\(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\implies\) \(n=p+q=3+5=8\)
Với n=8 thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn ycbt
Vậy n=8
Với \(n=0\) thì \(n^4+n^3+n^2=0\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương .
Có : \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương .
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)
vì nó là số chính phương đặt
\(n^2+n+503=a^2\Leftrightarrow4n^2+4n+1+2011=4a^2\)
<=>\(\left(2n+1\right)^2+2011=4a^2\)
<=> \(4a^2-\left(2n+1\right)^2=2011\)
<=> \(\left(2a-2n-1\right)\left(2a+2n+1\right)=2011\)
tìm ước rồi lập bảng chắc 2011 cs ít ước thôi
Đặt \(n^2+n+503=k^2\left(k\in N\right)\Leftrightarrow4n^2+4n+2012=4k^2\Leftrightarrow\left(2n+1\right)^2\)+2011=(2k)2
\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=2011\Leftrightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=2011\)
<=>2k-2n-1=-1 và 2k+2n+1=-2011 hoặc
2k-2n-1=1 và 2k+2n+1=2011
giải 2 cái hệ đó ra thì tìm được n