Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì \(\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=1\end{cases}}\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
Có \(n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\)
\(\Rightarrow n=3\)
Vậy với n = 3 thì \(\left(n^2-8\right)^2+36\) là số nguyên tố
\(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì
\(n^2+6n+10\)là số nguyên tố và \(n^2-6n+10=1\)
\(\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Với n = 0 => A = 03 - 2.02 + 2.0 - 4 = -4 ko là số nguyên tố
n = 1 => A = 13 - 2.12 + 2.1 - 4 = 1 - 2 + 2 - 4 = -3 ko là số nguyên tố
n = 2 => A = 23 - 2.22 + 2.2 - 4 = 0 ko là số nguyên tố
n = 3 => A = 33 - 2.32 + 2.3 - 4 = 11 là số nguyên tố
Với n \(\ge\)4 => A = n3 - 2n2 + 2n - 4 = n2(n - 2) + 2(n - 2) = (n2 + 2)(n - 2) có nhiều hơn 2 ước
=> A là hợp số
Vậy Với n = 3 thì A là số nguyên tố
\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)
Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)
\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)
\(\Rightarrow A⋮2\forall n\in N\)
Mà 2 là số nguyên tố duy nhất mà chia hết cho 2
\(\Rightarrow n^3-6n^2+9n-2=2\)
\(\Leftrightarrow n^3-6n^2+9n-4=0\)
Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))
Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.
\(A=\left(n^2-3\right)^2+16=n^4-6n^2+25=\left(n^4+10n^2+25\right)-16n^2=\left(n^2+5\right)^2-16n^2=\left(n^2-4n+5\right)\left(n^2+4n+5\right)\)Vì n là số tự nhiên nên \(n^2-4n+5\le n^2+4n+5\)suy ra để A là số nguyên tố thì \(n^2-4n+5=1\Leftrightarrow\left(n-2\right)^2=0\Leftrightarrow n=2\)
Thử n = 2 vào biểu thức A ta thấy thỏa mãn
Vậy n = 2 thì \(A=\left(n^2-3\right)^2+16\) là số nguyên tố
\(A=n^3+n^2-n+2=\left(n+2\right)\left(n^2-n+1\right)\)là số nguyên tố suy ra
\(\orbr{\begin{cases}n+2=1\\n^2-n+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1;n=0\end{cases}}\)
Thử lại đều thỏa mãn.