K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

22 tháng 10 2016

\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)

\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)

\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)

Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.

\(\Rightarrow n-3=1\)

\(\Rightarrow n=4\)

Thử lại : \(B=103\left(TM\right)\)

 

19 tháng 3 2017

a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)

vì A nguyên tố nên A chỉ có 2 ước

TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn

TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn

vậy n=2

xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

1 tháng 12 2017

B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)

Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1

=> n=4 hoặc n^3+2n^2+6=0

=> n=4 ( vì n^3+2n^2+6 > 0 )

Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)

Vậy n = 4

k mk nha

31 tháng 5 2017

ta có:

n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48

=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)

=> n2+2 thuộc Ư(48)  = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48}   (n2+2 luôn dương)

=> n= {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }

mà A có giá trị nguyên nên n2 = {0; 1; 4}

=> n = {0; ±1; ±2}