\(\left(n\ge1\right)\). Giả sử \(2^n+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(n=2^k.q\) trong đó \(q\)là số lẻ

ta có \(2^n+1=\left(2^{2^k}\right)^q+1⋮\left(2^{2^k}+1\right)\)

vì \(q\)lẻ

ta được:

nếu \(k\ge1\) thì là hợp số

\(k=0\) cũng là hợp số

nên \(q=1\)

khi đó \(n=2^k\left(đpcm\right)\)

6 tháng 8 2020

Tại sao mà  \(k\ge1\)lại suy ra q = 1

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

5 tháng 12 2016

Câu 3: 824

11 tháng 12 2016

Câu 1:13

Câu 2:36

Câu 3:824