K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Câu hỏi của Trần Cây Kem Lạnh - Toán lớp 6 - Học toán với OnlineMath

14 tháng 8 2019

b) \(4^2.3-4^5+27=3.4^n+27-4^5\)

\(4^2.3=3.4^n\)

=> n=2

14 tháng 8 2019

a) \(a^{n-1}-3a^3=a^4-3a^3\)

\(a^{n-1}=a^4\)

=> n-1=4

=> n=5

Câu 1: 

a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)

\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)

2 tháng 3 2018

a) \(n^2+2n-4=n^2+2n-15+11=\left(n^2+5n-3n-15\right)+11=\left(n-3\right)\left(n+5\right)+11\)

để \(n^2+2n-4\) chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)

n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)

n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)

vậy với n = 11k + 3 hoặc n = 11k' - 5 thì \(n^2+2n-4⋮11\)

b.

\(n^3-2=\left(n^3-8\right)+6=\left(n-3\right)\left(n^2+2n+4\right)+6\)

để \(n^3-2⋮n-2\) <=> 6 chia hết cho n-2 <=> n - 2 ∈ Ư(6) = {-6;-3;-2;-1;1;2;3;6}

Tương ứng n ∈ {-4; -1; 0; 1; 3; 4; 5; 8}

Vậy...

13 tháng 10 2019

a) x4 + 3x3 - 7x2 - 27x - 18

= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18

= x3 . (x + 1) + 2x2 . (x + 1) - 9x . (x + 1) - 18(x + 1)

= (x + 1)(x3 + 2x2 - 9x - 18)

= (x + 1)[x2 .(x + 2) - 9.(x + 2)]

= (x + 1)(x + 2)(x2 - 32)

= (x + 1)(x + 2)(x + 3)(x - 3)

b) x4 + 3x3 + 3x2 + 3x + 2

= x4 + x3 + 2x3 + 2x2 + x2 + x + 2x + 2

= x3 (x + 1) + 2x2 . (x + 1) + x(x + 1) + 2(x + 1)

= (x + 1)(x3 + 2x2 + x + 2)

= (x + 1)[x2 .(x + 2) + (x + 2)]

= (x + 1)(x + 2)(x2 + 1)

13 tháng 10 2019

\(x^4+3x^3-7x^2-27x-18\)

\(=\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(9x^2+9x\right)-\left(18x-18\right)\)

\(=x^3\left(x+1\right)+2x^2\left(x+1\right)-9x\left(x+1\right)-18\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+2x^2-9x-18\right)\)

\(=\left(x+1\right)\left[\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(6x-18\right)\right]\)

\(=\left(x+1\right)\left[x^2\left(x-3\right)+5x^2\left(x-3\right)+6\left(x-3\right)\right]\)

\(=\left(x+1\right)\left(x-3\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)^2\)

chứng minh gì vậy bạn

9 tháng 6 2019

vẫn hè mà e đã hok oi