Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^4+6x^3+5x^2-x^3-6x^2-5x-6x^2-36x-30\)
\(=x^2\left(x^2+6x+5\right)-x\left(x^2+6x+5\right)-6\left(x^2+6x+5\right)\)
\(=\left(x^2-x-6\right)\left(x^2+6x+5\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\left(x+5\right)\)
\(B=x^3+3x^2+3x^2y+3xy^2+y^3+3y^2+6xy+3x+3y+2019\)
\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2019\)
\(=\left[\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+1\right]+2018\)
\(=\left(x+y-1\right)^3+2018\)
Mà \(x+y=101\)
\(B=\left(101-1\right)^3+2018=1002018\)
Đang 3x2+3y2 sao lại ra -3(x+y)2 ?? Phải là +3(x2+y2) chứ :v Không nhớ hằng đẳng thức 1 và 3 à :v với cả 6xy đâu?
Câu 1:
a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)
x4-2x3+2x-1
=(x4-1)+(-2x3+2x)
=(x2+1)(x2-1)-2x(x2-1)
=(x2-1)(x2+1-2x)
=(x-1)(x+1)(x-1)2
=(x-1)3(x+1)
đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)
\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)
TH1: \(x-1=0\Leftrightarrow x=1\)
TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
a) x4 + 3x3 - 7x2 - 27x - 18
= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18
= x3 . (x + 1) + 2x2 . (x + 1) - 9x . (x + 1) - 18(x + 1)
= (x + 1)(x3 + 2x2 - 9x - 18)
= (x + 1)[x2 .(x + 2) - 9.(x + 2)]
= (x + 1)(x + 2)(x2 - 32)
= (x + 1)(x + 2)(x + 3)(x - 3)
b) x4 + 3x3 + 3x2 + 3x + 2
= x4 + x3 + 2x3 + 2x2 + x2 + x + 2x + 2
= x3 (x + 1) + 2x2 . (x + 1) + x(x + 1) + 2(x + 1)
= (x + 1)(x3 + 2x2 + x + 2)
= (x + 1)[x2 .(x + 2) + (x + 2)]
= (x + 1)(x + 2)(x2 + 1)
\(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(9x^2+9x\right)-\left(18x-18\right)\)
\(=x^3\left(x+1\right)+2x^2\left(x+1\right)-9x\left(x+1\right)-18\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+2x^2-9x-18\right)\)
\(=\left(x+1\right)\left[\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(6x-18\right)\right]\)
\(=\left(x+1\right)\left[x^2\left(x-3\right)+5x^2\left(x-3\right)+6\left(x-3\right)\right]\)
\(=\left(x+1\right)\left(x-3\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)^2\)