Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
Ta có :
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
Vậy \(n=4\)
Chúc bạn học tốt ~
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)
\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)
Chúc bạn học tốt ~
+ n chẵn
Có \(2\equiv-1\) \(\text{( mod 3 )}\)
\(\Rightarrow2^n\equiv\left(-1\right)^n=1\text{( mod 3 )}\)
\(\Rightarrow2^n+1=2\text{( mod 3 )}\) ( loại )
+ \(n\) lẻ :
Có : \(2\equiv-1\) \(\text{( mod 3 )}\)
\(\Rightarrow2^n\equiv\left(-1\right)^n=-1\text{( mod 3 )}\)
\(\Rightarrow2^n+1\equiv0\text{( mod 3 )}\)
hay \(3\left|\left(2^n+1\right)\right|\)
Vậy với \(n\)lẻ thì ...............
Đặt UCLN là d đi bạn
Ta co (n+5)(n+6)=n^2+5n+6n+30.ma 6n chia het cho 6n,5n va n^2 chia het cho n
Ma theo de bai cho n^2 +5n+6n+30 chia het cho 6n suy ra 30 chia het cho 6n
suy ra 6n thuoc u cua 30 con lai ban tu tinh nhe