K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

+ n chẵn 

Có \(2\equiv-1\) \(\text{( mod 3 )}\)

\(\Rightarrow2^n\equiv\left(-1\right)^n=1\text{( mod 3 )}\)

\(\Rightarrow2^n+1=2\text{( mod 3 )}\) ( loại )

\(n\) lẻ :

Có : \(2\equiv-1\) \(\text{( mod 3 )}\)

\(\Rightarrow2^n\equiv\left(-1\right)^n=-1\text{( mod 3 )}\)

\(\Rightarrow2^n+1\equiv0\text{( mod 3 )}\)

hay \(3\left|\left(2^n+1\right)\right|\)

Vậy với \(n\)lẻ thì ...............

29 tháng 3 2018

Nếu n = 3k (k N) thì 5n – 2n = 53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9

Nếu n = 3k + 1 thì 5n – 2n = 5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k

= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3

Tương tự: nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9

20 tháng 6 2018

\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=n^2+n^2+2n+1+n^2+4n+4+n^2+6n+9\)

\(=4n^2+12n+14=\left(2n\right)^2+2\cdot2n\cdot3+3^2+5=\left(2n+3\right)^2+5\)

vì \(5⋮5\)để \(A⋮5\Rightarrow\left(2n+3\right)^2⋮5\Rightarrow2n+3⋮5\Rightarrow2n-2+5⋮5\Rightarrow2n-2⋮5\Rightarrow2\left(n-1\right)⋮5\Rightarrow n-1⋮5\)

vì 1 chia 5 dư 1 để n-1 chia hết cho 1 suy ra n chia cho 5 phải dư 1

\(\Rightarrow n=\left(6;11;16;...;5n+1\right)\)

vậy \(n=\left(6;11;16;...;5n+1\right)\)thì \(A⋮5\)

17 tháng 10 2022

\(A=5^{3k+1}-2^{3k+1}=\left(5-2\right)\cdot\left(5^{3k}+5^{3k-1}\cdot2+...+2^{3k}\right)⋮̸9\)

(Vì \(5^{3k}+5^{3k-1}\cdot2+...+2^{3k}⋮̸3\))

TH2: n=3k+2

\(A=5^{3k+2}-2^{3k+2}\)

\(=\left(5-2\right)\cdot\left(5^{3k+1}+5^{3k}\cdot2+5^{3k-1}\cdot2^2+...+2^{3k+1}\right)\) không chia hết cho 9 vì \(5^{3k+1}+5^{3k}\cdot2+5^{3k-1}\cdot2^2+...+2^{3k+1}⋮̸3\)

TH3: n=3k

\(A=5^{3k}-2^{3k}=125^k-8^k=\left(125-8\right)\cdot B=117\cdot B⋮9\)

19 tháng 3 2018

Xét các giá trị \(n=0;1\) không thỏa mãn

Xét n là số lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow3^n-1=3^{2k+1}-1=9^k.3-1=9^k.3-3+2\)

\(=3\left(9^k-1\right)+2\)

Ta có : \(9^k-1⋮9-1\) hay \(9^k-1⋮8\) \(\Rightarrow3\left(9^k-1\right)+2\) chia cho 8 dư 2 (loại)

Xét n là số 8 \(\Rightarrow n=2k\)

\(\Rightarrow3^n-1=3^{2k}-1=9^k-1⋮8\forall k\in N\)

Vậy \(3^n-1⋮8\) khi n chẵn và \(n\ge2\)

19 tháng 3 2018

n=2 nhé bạn

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3