K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

Để \(\frac{4x-1}{3-x}\)là số nguyên đúng không  nếu thế ta có cách giải

Để phân số  \(\frac{4x-1}{3-x}\) là số nguyên thì 4x-1 phải chia hết cho 3-x

Hay 4x-12+11 phải chia hết cho 3-x

         4*(x-3)+11 phải chia hết cho 3-x

Hay -4*(3-x) +11 phải chia hết cho 3-x

Vì -4*(3-x) chia hết cho 3-x Nên 11 phải chia hết cho 3-x

=>3-xE Ư(11)={+1;-1;+11;-11}

        xE {2;4;-8;14}

28 tháng 4 2016

x này có thể là bất kì số nào ! 

x thuộc tập hợp Z

Vì đề bài ta chỉ kêu tìm x ko nói gì thêm. Ít có cái đề vậy lắm, nên kiểm tra lại đề.

28 tháng 4 2016

Để \(\frac{3x+7}{x-1}\)có giá trị là số nguyên thì 3x + 7 phải chia hết cho x - 1

=> 3x + 7 chia hết cho x - 1

=> 3x - 3 + 10 chia hết cho x - 1

=> 3(x - 1) + 10 chia hết cho x - 1

mà 3(x - 1) chia hết cho x - 1

=> 10 chia hết cho x - 1

=> \(x-1\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(=>x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)

Chúc bạn học tốt!

28 tháng 4 2016

mik cũng làm như bạn

24 tháng 3 2016

Đặt \(A=\left|x-2\right|+\left|x-3\right|\)

Ta có:

\(\left|x-3\right|=\left|3-x\right|\)

\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Do đó 1 chính là giá trị nhỏ nhất của A

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Ta có bảng xét dấu sau:

x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _

\(\Rightarrow2\le\)\(x\le\)\(3\)

\(\Rightarrow x\in\left\{2;3\right\}\)

Vậy \(x\in\left\{2;3\right\}\)

 

 

 

23 tháng 2 2016

a) Theo đề bài, ta có :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)

2y+11-13-35-515-15
2y0-22-44-614-16
y0-11-22-37-8
x30-3010-106-62-2

b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)

5x-1-14-6
5x05-5
x01-1
y-6015-10

 

9 tháng 3 2016

ta có : \(x\ne3\) để mẫu khác 0

Vì 2 phân số có cùng mẫu nên

\(\left|x-5\right|=\left|x-1\right|\)

*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)

\(x-5=x-1\)

\(0x=4\)

KHông có giá trị x

*TH2:

\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)

\(-\left(x-5\right)=-\left(x-1\right)\)

\(\Rightarrow-x-5=-x+1\)

\(0x=-4\)

Không có giá trị x

*TH3:

\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)

\(-\left(x-5\right)=x-1\)

\(\Rightarrow5+1=2x\)

\(\frac{6}{2}=x\)

\(x=3\)

Mà \(x\ne3\) 

nên ko có giá trị thỏa mãn

vậy không có giá trị x nguyên thỏa mãn với đề bài

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

8 tháng 4 2016

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E  Z

<=>4 chia hết cho \(\sqrt{x}-3\)

<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}

+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại  vì \(\sqrt{x}\) >= 0)

+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)

+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)

+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)

+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)

+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)

Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài

 

 

5 tháng 7 2019

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)

Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z

\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
\(x\) 16 4 25 1 49 loại

Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z

5 tháng 3 2016

4x(3y + 11)=6y(2x + 8)  =>12xy + 44x =12xy + 48y

=>44x = 48y  =>\(\frac{x}{y}\)=\(\frac{48}{44}\)