K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

dư 20 nha

cách làm : nhóm 3 số vào 1 nhóm  thừa 2 số

số nhỏ nhất nhóm ra ngoài

thanks nguyễn yến nhi

13 tháng 12 2021

A=4+42+43+44+....+489

<=> A= (4+4^2+4^3+4^4)+(4^5+4^6+4^7+4^8)+...+(4^87+4^88+4^89+4^90)-4^90

<=>A=4(1+4+4^2+4^3)+4^5(1+4+4^2+4^3)+...+4^87(1+4+4^2+4^3)-4^90

<=>A=4.85+4^5.85....4^87.85-4^90

<=>A=(4+4^5+....4^87).85-4^90

Vì A=(4+4^5+....4^87).85-4^90 chia hết cho 85

=> A= (ban đầu)chia hết cho 85 

=> A o có dư 

23 tháng 12 2017

A=(4+42)+(43+44)+.....+(449+450)

A=20+42.(4+42)+....+448.(4+42)

A=20+42.20+....+448.20

A=20.(42+...+448)

A chia het cho 5

23 tháng 12 2017

Ai giải nhanh nhất. Mk tặng 1 k

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 1:

Theo đề ra ta có:

$a-2\vdots 3; a-3\vdots 5$

$a-2-2.3\vdots 3; a-3-5\vdots 5$

$\Rightarrow a-8\vdots 3; a-8\vdots 5$

$\Rightarrow a-8=BC(3,5)$

$\Rightarrow a-8\vdots 15$

$\Rightarrow a=15k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 6

$\Rightarrow a-6\vdots 11$

$\Rightarrow 15k+8-6\vdots 11$

$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$

$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$

$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$

$\Rightarrow k=11m+5$

Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.

Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$

$\Rightarrow m=0,1,2$

Nếu $m=0$ thì $a=165.0+83=83$

Nếu $m=1$ thì $a=165.1+83=248$

Nếu $m=2$ thì $a=165.2+83=413$

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 2:

$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$

$\Rightarrow a\vdots 3060$

Mà $a<1000$ nên $a=0$

15 tháng 12 2015

chtt

ai cho thêm 2 li-ke cho lên 165 với

15 tháng 12 2015

chtt

tick mik nha các bạn.cho mik thêm ****

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$A=(4+4^3+4^5+...+4^{17})+(4^2+4^4+4^6+...+4^{16})$

$=[4+(4^3+4^5)+(4^7+4^9)+....+(4^{15}+4^{17})]+[(4^2+4^4)+(4^6+4^8)+...+(4^{14}+4^{16})]$

$=[4+4^3(1+4^2)+4^7(1+4^2)+...+4^{15}(1+4^2)]+[4^2(1+4^2)+4^6(1+4^2)+....+4^{14}(1+4^2)]$

$=4+(1+4^2)(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$

$=4+17(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$

$\Rightarrow A$ chia $17$ dư $4$.

19 tháng 12 2016

Ta có : \(A=4+4^2+4^3+...+4^{17}\)

\(=4+\left(4^2+4^4\right)+\left(4^3+4^5\right)+...+\left(4^{15}+4^{17}\right)\)

\(=4+4^2\left(1+4^2\right)+4^3\left(1+4^2\right)+...+4^{15}\left(1+4^2\right)\)

\(=4+4^2\cdot17+4^3\cdot17+...+4^{15}\cdot17\)

\(=4+17\cdot\left(4^2+4^3+...+4^{15}\right)\)

\(A\) : \(17\) dư 4