Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
Bài 1:
a) ta có: 12-n chia hết cho 8-n
=> 4+8-n chia hết cho 8-n
mà 8-n chia hết cho 8-n
=> 4 chia hết cho 8-n
=> 8-n thuộc Ư(4)= (1;-1;2;-2;4;-4)
nếu 8-n = 1 => n = 7 (TM)
8-n = -1 => n = 9 (TM)
8-n = 2 => n = 6 (TM)
8-n = -2 =>n = 10 (TM)
8-n = 4 => n =4 (TM)
8-n = -4 => n = 12 (TM)
KL: n = ( 7;9;6;10;4;12)
b) ta có: n2 + 6 chia hết cho n2+1
=> n2 + 1 + 5 chia hết cho n2+1
mà n2+1 chia hết cho n2+1
=> 5 chia hết cho n2+1
=> n2+1 thuộc Ư(5)=(1;-1;5;-5)
nếu n2+1 = 1 => n2=0 => n = 0 (Loại)
n2+1 = -1 => n2 = -2 => không tìm được n ( vì lũy thừa bậc chẵn có giá trị nguyên dương)
n2+1 = 5 => n2 = 4 => n=2 hoặc n= -2
n2+1 = -5 => n2 = -6 => không tìm được n
KL: n = (2;-2)
Bài 2:
Gọi số tự nhiên cần tìm là: a
ta có: a chia 4 dư 1 => a-1 chia hết cho 4 ( a chia hết cho 7)
a chia 5 dư 1 => a-1 chia hết cho 5
a chia 6 dư 1 => a-1 chia hết cho 6
=> a-1 chia hết cho 4;5;6 => a-1 thuộc BC(4;5;6)
BCNN(4;5;6) = 60
BC(4;5;6) = (60;120;180; 240;300;360;...)
mà a < 400
=> a-1 thuộc ( 60;120;180;240;300;360)
nếu a-1 = 60 => a=61 (Loại, vì không chia hết cho 7)
a-1 = 120 => a = 121 (loại)
a-1 = 180 => a = 181 (Loại)
a-1 = 240 => a = 241 (Loại)
a-1 = 300 => a = 301 ( TM)
a-1 = 360 => a = 361 (Loại)
KL: số cần tìm là: 301
- Số 1546 có tổng 1 + 5 + 4 + 6 = 16. Tổng này chia cho 9 dư 7, chia cho 3 dư 1.
Do đó, số 1546 chia cho 9 dư 7, chia cho 3 dư 1.
- Số 1527 có tổng 1 + 5 + 2 + 7 = 15. Tổng này chia cho 9 dư 6, và chia hết cho 3.
Do đó, số 1527 chia cho 9 dư 6, và chia hết cho 3.
- Số 2468 có tổng 2 + 4 + 6 + 8 = 20. Tổng này chia cho 9 dư 2, chia cho 3 dư 2.
Do đó, số 2468 chia cho 9 dư 2, chia cho 3 dư 2.
- Số 1011 có tổng 1 + 0 + ... + 0 = 1. Tổng này chia cho 9 dư 1, chia cho 3 dư 1.
Do đó, số 1011 chia cho 9 dư 1, chia cho 3 dư 1.
Chỉ cần tìm dư trong phép chia tổng các chữ số cho 9, cho 3.
Vì 1 + 5 + 4 + 6 = 16 chia cho 0 dư 7 và chia cho 3 dư 1 nên 1546 chia cho 9 dư 7, chia cho 3 dư 1;
Vì 1 + 5 + 2 + 7 = 15 chia cho 9 dư 6, chia hết cho 3 nên 1526 chia cho 9 dư 6 chia cho 3 dư 0;
Tương tự, 2468 chia cho 9 dư 2, chia cho 3 dư 1;
1011 chia cho 9 dư 1, chia cho 3 dư 1.
8=2^3
2^75 : 2^3 = 2^72 chia hết cho 8
Vậy số dư khi chia 2^75 cho 8 là 0
\(3^{100}=\left(3^2\right)^{50}=9^{50}\).
Do 9 : 8 = 1(dư 1) nên \(9^{50}:8\) sẽ có số dư \(1^{50}=1\).