Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8=2^3
2^75 : 2^3 = 2^72 chia hết cho 8
Vậy số dư khi chia 2^75 cho 8 là 0
\(3^{100}=\left(3^2\right)^{50}=9^{50}\).
Do 9 : 8 = 1(dư 1) nên \(9^{50}:8\) sẽ có số dư \(1^{50}=1\).
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
a) Gọi ƯCLN (21n+4 ; 14n+3) =d ( ĐK: d \(\inℕ^∗\))
=> \(\hept{\begin{cases}21n+4\\14n+3\end{cases}}\)\(⋮\)d
=> \(\hept{\begin{cases}2.\left(21n+4\right)\\3.\left(14n+3\right)\end{cases}}\)\(⋮\)d
=>\(\hept{\begin{cases}42n+8\\42n+9\end{cases}}\)\(⋮\)d
=> (42n+9) - (42n+8) \(⋮\)d
42n+9 - 42n - 8 \(⋮\)d
( 42n - 42n) + ( 9 - 8) \(⋮\)d
=> 1\(⋮\)d
=> d = 1
=> ƯCLN ( 21n+4 ; 14n+3 ) = 1
Vậy phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
b) mk k bt làm
Chúc bn hok tốt!!
Nếu đúng thì tk mk nha
\(\text{Gọi ƯCLN( 21n + 4 , 14n + 3 ) là d}\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{Phân số }\frac{21n+4}{14n+4}\text{ là phân số tối giản}\)
- Số 1546 có tổng 1 + 5 + 4 + 6 = 16. Tổng này chia cho 9 dư 7, chia cho 3 dư 1.
Do đó, số 1546 chia cho 9 dư 7, chia cho 3 dư 1.
- Số 1527 có tổng 1 + 5 + 2 + 7 = 15. Tổng này chia cho 9 dư 6, và chia hết cho 3.
Do đó, số 1527 chia cho 9 dư 6, và chia hết cho 3.
- Số 2468 có tổng 2 + 4 + 6 + 8 = 20. Tổng này chia cho 9 dư 2, chia cho 3 dư 2.
Do đó, số 2468 chia cho 9 dư 2, chia cho 3 dư 2.
- Số 1011 có tổng 1 + 0 + ... + 0 = 1. Tổng này chia cho 9 dư 1, chia cho 3 dư 1.
Do đó, số 1011 chia cho 9 dư 1, chia cho 3 dư 1.
Chỉ cần tìm dư trong phép chia tổng các chữ số cho 9, cho 3.
Vì 1 + 5 + 4 + 6 = 16 chia cho 0 dư 7 và chia cho 3 dư 1 nên 1546 chia cho 9 dư 7, chia cho 3 dư 1;
Vì 1 + 5 + 2 + 7 = 15 chia cho 9 dư 6, chia hết cho 3 nên 1526 chia cho 9 dư 6 chia cho 3 dư 0;
Tương tự, 2468 chia cho 9 dư 2, chia cho 3 dư 1;
1011 chia cho 9 dư 1, chia cho 3 dư 1.
a) Gọi số tự nhiên cần tìm là a
Ta có: a+1 chia hết cho 3
a+1 chia hết cho 4
a+1 chia hết cho 5
a+1 chia hết cho 10
\(\Rightarrow\) a+1 \(\in\) B(3;4;5;10)
Lại có: BCNN(3;4;5;10) là 60
\(\Rightarrow\) a = 59