K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{a}{b}=\frac{a+6}{b+9}\)

\(\Leftrightarrow a\left(b+9\right)=b\left(a+6\right)\)

\(\Leftrightarrow ab+a9=ab+b6\)

\(\Leftrightarrow a9=b6\)

\(\Leftrightarrow\frac{a}{6}=\frac{b}{9}\)

\(\Leftrightarrow\frac{a}{b}=\frac{6}{9}\)

\(\Leftrightarrow\frac{a}{b}=\frac{2}{3}\)

Vậy ...

hok tốt!!

23 tháng 3 2020

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{a+6}{b+9}=\frac{6}{9}=\frac{2}{3}\)

Vậy phân số tối gian của \(\frac{a}{b}\)\(\frac{2}{3}\).

Chúc bạn học tốt@@

9 tháng 9 2017

bài 1 nè
\(\frac{a}{5}-\frac{1}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{1}{b}=\frac{a}{5}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a}{15}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a-2}{15}\)
\(\Rightarrow\left(3a-1\right).b=1.15=15=1.15=3.5\)

rồi sau đó lập bảng và viết kết quả nhé

9 tháng 9 2017

khó hiểu quá

25 tháng 6 2015

Đặt \(\frac{a}{2}=\frac{c}{4}=\frac{e}{5}\) = k => a = 2k; c = 4k ; e = 5k

\(\frac{b}{3}=\frac{d}{5}=\frac{g}{6}\)= h => b = 3h; d = 5h; g = 6h

Khi đó: \(\frac{a}{b}+\frac{c}{d}+\frac{e}{g}=\frac{2k}{3h}+\frac{4k}{5h}+\frac{5k}{6h}=\left(\frac{2}{3}+\frac{4}{5}+\frac{5}{6}\right).\frac{k}{h}=2\frac{3}{10}\)

=> \(\frac{23}{10}.\frac{k}{h}=\frac{23}{10}\)=> \(\frac{k}{h}=1\)=> k = h

Vậy \(\frac{a}{b}=\frac{2k}{3h}=\frac{2}{3};\frac{c}{d}=\frac{4}{5};\frac{e}{g}=\frac{5}{6}\)

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

20 tháng 12 2019

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1

Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)

Vậy :