Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
a, Gọi d là ƯCLN\((8n+5,6n+4)\)
Ta có : \(\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3(8n+5)⋮d\\4(6n+4)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}}\)
\(\Leftrightarrow(24n+16)-(24n+15)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy : ....
\(b,2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x\cdot2^2-2^x=96\)
\(\Leftrightarrow2^x\left[2^2-1\right]=96\)
\(\Leftrightarrow2^x\cdot3=96\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
Dặt d =(A=15n2+8n+6;B=30n2+21n+13)
=> A;B cùng chia hết cho d
B-2A=30n2+21n+13- 30n2-16n -12 =5n+1 chia hết cho d
=> d =5n+1 hoặc d =1
+d =5n+1; nhưng A không chia hết ch o 5n+1 loại
Vậy d =1
=> Phân thức A/B là tối giản.
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
Bài 1 :
a) \(\frac{x}{7}=\frac{18}{14}\)
=> x.14 = 7.18
x.14 = 126
x = 126:14
x = 9
b) \(\frac{6}{x}=\frac{7}{4}\)
=> \(x=\frac{6.4}{7}=\frac{24}{7}\)
c) Theo mình đề thế này mới đúng \(\frac{5,7}{0,35}=\frac{\left(-x\right)}{0,45}\)
=> 5,7.0,45 = 0,35.(-x)
2,565 = 0,35.(-x)
(-x) = 2,565:0,35
(-x) = 513/70
=> -x = -513/70
x = 513/70
Bài 2 : Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
\(\frac{x}{2}=2\)
x = 2.2
x = 4
\(\frac{y}{4}=2\)
y = 2.4
y = 8
\(\frac{z}{6}\) = 2
z = 2.6
z = 12
Vậy x=4 ; y=8 và z=12
bài 1 nè
\(\frac{a}{5}-\frac{1}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{1}{b}=\frac{a}{5}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a}{15}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a-2}{15}\)
\(\Rightarrow\left(3a-1\right).b=1.15=15=1.15=3.5\)
rồi sau đó lập bảng và viết kết quả nhé
khó hiểu quá