Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Do p là số nguyên tố nên p là số tự nhiên.
*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)
*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)
*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)
Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.
b) (Làm tương tự bài trên)
- Do p là số nguyên tố => p là số tự nhiên.
*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)
*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)
*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)
Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.
a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài
Xét với p > 3 , ta biểu diễn :
\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.
Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3
\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì \(p^2+8\)là số nguyên tố lớn hơn 3)
Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)
b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.
Với p là số nguyên tố, p > 3 :
Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3
Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3
Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3
=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)
Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)
Thực hiện phép chia ta có:
Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)
\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)
=> \(4x-1⋮x^2+3\) (1)
=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)
Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)
=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)
=> \(-x-12⋮x^2+3\)
=> \(x+12⋮x^2+3\)
=> \(4x+48⋮x^2+3\) (2)
Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)
=> \(49⋮x^2+3\)
=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x
=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)
Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn
Vậy x=2
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)
P là số nguyên tố
mà p > 2
=> p lẻ
Có : p2 - 1 = (p - 1).(p + 1)
Với p lẻ
=> p - 1 và p + 1 là 2 số chẵn
=> (p - 1)(p + 1) \(⋮\) 2.4 = 8
(trong 2 số chẵn liên tiếp luôn tồn tại số chia hết cho 2 và 4)
=> p2 - 1 \(⋮\) 8
Để phương trình có nghiệm nguyên thì nghiệm đó phải là ước của p. Như vậy, các nghiệm nguyên có thể có là 1 ; -1; p và -p.
Với x = 1 thì phương trình trở thành: 2- p = 0 hay p = 2. (Nhận)
Với x = -1 thì phương trình trở thành: p = 0 (Loại)
Với x = p thì phương trình trở thành: p = 0 (Loại)
Với x = - p thì phương trình trở thành \(p^2-p-p=0\Rightarrow p\left(p-2\right)=0\Rightarrow\orbr{\begin{cases}p=0\left(L\right)\\p=2\left(N\right)\end{cases}}\)
Vậy với p = 2 thì pt có hai nghiệm nguyên, các trường hợp nguyên tố còn lại đều ko có nghiệm nguyên.