Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n+8⋮n-2\)
\(n-2+10⋮n-2\)
\(10⋮n-2\)hay \(n-2\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
n - 2 | 1 | 2 | 5 | 10 |
n | 3 | 4 | 7 | 12 |
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
ta có: 4n - 5 \(⋮\) n
=> 5 \(⋮\) n ( vì 4n \(⋮\) n )
=> n \(\in\)Ư ( 5 ) = { -5;-1;5;1 }
vậy : n \(\in\) { -5;-1;5;1 }
ban jtk mk nha.
4n + 5 ⋮ n - 2
4n - 8 + 13 ⋮ n - 2
4(n - 2) + 13 ⋮ n - 2
=> 13 ⋮ n - 2
Hay n - 2 thuộc Ư(13) là - 13; - 1; 1; 13
=> n - 2 = { - 13; - 1; 1; 13 }
=> n = { - 11; 1 ; 3 ; 15 }
Ta có : 4n + 5 chia hết cho n - 2
4n + 5 chia hết cho n- 2
=> ( 4n - 4 ) + 9 chia hết cho n - 2
=> 2(2n - 2 ) + 9 chia hết cho n - 2
Vì 2(2n - 2 ) chia hết cho n - 2
Suy ra 9 chia hết cho n - 2
=> \(\left(n-2\right)\inƯ\left(9\right)\)
\(\Rightarrow\left(n-2\right)\in\left\{1;3;9\right\}\)
\(\Rightarrow n=\left\{3;5;11\right\}\)
Vậy \(n=\left\{3;5;11\right\}\)
4n-16 chia hết n-2
=>4(n-2)-8 chia hết n-2
Vi 4(n-2) chia hết n-2 nên 8 chia het n-2
=>n-2 thuộc U(8)={-1;1;-2;2;-4;4;-8;8}
=>n thuộc {1;3;0;4;-2;6;-6;10}
a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3
Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3
Suy ra 7 chia hết cho n-3
Suy ra n-3 thuộc ước của 7
Suy ra n-3 thuộc {1;-1;7;-7}
Suy ra n thuộc{4;2;10;-4}
Vậy _______________________
b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4
Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4
Suy ra n+4 thuộc ước của 11
Suy ra n+4 thuộc {1;-1;11;-11}
Suy ra n thuộc {-3;-5;7;-15}
Vậy ________________
a) Để n - 6 chia hết cho n + 1 <=> ( n + 1 ) - 7 chia hết cho n - 1
Để ( n + 1 ) - 7 chia hết cho n + 1 <=> 7 chia hết cho n + 1
<=> n + 1 là ước của 7
Ư(7) = { - 7; - 1; 1; 7 }
Ta có n + 1 = - 7 => = - 8 (TM)
n + 1 = - 1 => n = - 2 (TM)
n + 1 = 1 => n = 0 (TM)
n + 1 = 7 => n = 6 (TM)
Vậy n = { - 8; - 1; 0; 6 }
Ta có: \(\frac{4n+9}{n-1}\)=\(\frac{4n-4+13}{n-1}\)=\(\frac{4\left(n-1\right)+13}{n-1}\)=\(4+\frac{13}{n-1}\)
Để \(4n+9⋮\)\(n-1\)thì \(\frac{13}{n-1}\in Z\)\(\Rightarrow13⋮n-1\)hay \(n-1\inƯ\left(13\right)\)
Ư(13)= {-1;1;-13;13}
Ta có: n-1= -1 => n=0
n-1 = 1 => n=2
n-1 = -13 => n= -12
n-1 = 13 => n=14
Vậy để\(4n+9⋮n-1\)thì n\(\in\){0;2;-12;14}
4n+9 chia hết cho n-1
=> 4n+4+5 chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)
=> n-1 thuộc (1;-1;5;-5)
Ta có bảng sau:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
=> n thuộc tập hợp ( 2;0;6;-4)
Vậy.........................
Để n + 1 chia hết cho n thì 1 chia hết cho n
Nên n thuộc Ư(1) = {-1;1}
Vậy n = {-1;1}
Ta có : 2n + 3 chia hết cho n - 1
Nên 2n - 2 + 5 chia hết cho n - 1
<=> 2.(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {-5;-1;1;5}
=> n = {-4;0;2;6}
Có :
4n -196 chia hết cho n
n chia hết cho n suy ra 4n chia hết cho n
từ các chứng minh trên suy ra 4n - 196 -4n chia hết cho n
=> (4n-4n) - 196 chia hết cho n
=> 0 - 196 chia hết cho n
=> -196 chia hết cho n
=> n thuộc Ư(-196)
Đáp án : n thuộc Ư(-196)
Có : 4n - 196 chia hết cho n
n chia hết cho n suy ra 4n chia hết cho n
Từ các chứng minh trên suy ra 4n - 196 - 4n chia hết cho n
= > ( 4n - 4n ) - 196 chia hết cho n
= > 0 - 196 chia hết cho n
= > - 196 chia hết cho n
= > n thuộc Ư ( - 196 )
Đáp số : n thuộc Ư ( - 196 )