Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+3⋮n-1\)
\(\Rightarrow2\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy..............................
\(n^2-5⋮n+4\)
\(\Rightarrow n\left(n+4\right)-4n+5⋮n+4\)
\(\Rightarrow4n+5⋮n+4\)
\(\Rightarrow4\left(n+4\right)-11⋮n+4\)
\(\Rightarrow11⋮n+4\Rightarrow n+4\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{-3;-5;7;-15\right\}\)
Vậy.........................
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
Để n + 1 chia hết cho n thì 1 chia hết cho n
Nên n thuộc Ư(1) = {-1;1}
Vậy n = {-1;1}
Ta có : 2n + 3 chia hết cho n - 1
Nên 2n - 2 + 5 chia hết cho n - 1
<=> 2.(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {-5;-1;1;5}
=> n = {-4;0;2;6}
\(\Leftrightarrow12n^2+16n-4⋮4n-3\)
\(\Leftrightarrow12n^2-9n+25n-4⋮4n-3\)
\(\Leftrightarrow100n-16⋮4n-3\)
\(\Leftrightarrow4n-3\in\left\{1;-1;59;-59\right\}\)
hay \(n\in\left\{1;-14\right\}\)
a, Vì : \(4n⋮n\Rightarrow5⋮n\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
Vậy \(n\in\left\{\pm1;\pm5\right\}\)
b, Vì : \(3n+2⋮2n-1\Rightarrow2\left(3n+2\right)⋮2n-1\Rightarrow6n+4⋮2n-1\) (1)
Mà : \(2n-1⋮2n-1\Rightarrow3\left(2n-1\right)⋮2n-1\Rightarrow6n-3⋮2n-1\) (2)
Từ (1) và (2) \(\Rightarrow\left(6n+4\right)-\left(6n-3\right)⋮2n-1\)
\(\Rightarrow6n+4-6n+3⋮2n-1\Rightarrow7⋮2n-1\)
\(\Rightarrow2n-1\in\left\{\pm1;\pm7\right\}\)
Ta có bảng sau :
2n - 1 | 1 | -1 | 7 | -7 |
n | 1 | 0 | 4 | -3 |
Vậy \(n\in\left\{0;1;4;-3\right\}\)
ta thấy 4n chia hết cho n
vậy 5 phải chia hết cho n
mặt khác ước của 5={1;5;-1;-5}
vậy n={``1;5;-1;-5}
câu còn lại tự làm
n\(\in\)Z hay n\(\in\)N*
a) Để n - 6 chia hết cho n + 1 <=> ( n + 1 ) - 7 chia hết cho n - 1
Để ( n + 1 ) - 7 chia hết cho n + 1 <=> 7 chia hết cho n + 1
<=> n + 1 là ước của 7
Ư(7) = { - 7; - 1; 1; 7 }
Ta có n + 1 = - 7 => = - 8 (TM)
n + 1 = - 1 => n = - 2 (TM)
n + 1 = 1 => n = 0 (TM)
n + 1 = 7 => n = 6 (TM)
Vậy n = { - 8; - 1; 0; 6 }