K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3

Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3

Suy ra 7 chia hết cho n-3

Suy ra n-3 thuộc ước của 7

Suy ra n-3 thuộc {1;-1;7;-7}

 Suy ra  n thuộc{4;2;10;-4}

Vậy _______________________

b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4

Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4

Suy ra n+4 thuộc ước của 11

Suy ra n+4 thuộc {1;-1;11;-11}

Suy ra   n   thuộc {-3;-5;7;-15}

Vậy ________________

29 tháng 6 2015

a) ta thấy 4n đã chia hết cho n rồi => muốn biểu thức chia hết cho n <=> 5 chia hết cho n <=> n thuộc Ư(5) <=> n thuộc (+-1;+-5)

b) \(n^2-7=n^2-9+2=\left(n-3\right)\left(n+3\right)+2\).  ta thấy (n-3)(n+3) đã chia hết cho n+3 rồi => muốn biểu thức chia hết cho n+3 <=> 2 chia hết cho n+3 <=> n+3 thuộc Ư(2)<=> n+3 thuộc (+-1; +-2)

đến đây lập bảng tìm n nha. kết quả: n thuộc (-2;-4;-1;-5)

c) dễ thấy n+3 chia cho n^2-7 dư n+3 => muốn chia hết thì n+3=0 <=> n=-3

18 tháng 10 2015

a) Ta có  4n-5=4n-2+3 

Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1

=> 3 chia hết cho n-1

=> n-1 thuộc Ư(3)={1;3;-1;-3}

=>n={2;4;0;-2}

Do n thuộc N nên n={2;4;0}

các câu còn lại tương tự  

tick nha

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

21 tháng 11 2017

a)Ta có :74n-1=...1-1=...0\(⋮\)5

Vậy 74n-1\(⋮\)5

b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5

Vậy ...

c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5

Vậy ...

d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5

Vậy ...

e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10

Vậy

f)mik ko biết làm

g)mik cũng ko biết làm

22 tháng 11 2017

bạn cố gắng làm câu f và câu g giúp mình nha

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

a. Ta có:

$7^4\equiv 1\pmod 5$

$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$

$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$

Hay $7^{4n}-1\vdots 5$

b.

$2^4\equiv 1\pmod 5$

$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$

$\Rightarrow 2^{4n+1}+3\vdots 5$

14 tháng 8 2018

a;n^2+n-n+3 chia hết n+1

n(n+1)-n+3 chia hết n+1

-n+3 chia hết n+1

n-3 chia hết n+1

n+1-4 chia hết n+1

-4 chia hết n+1

4 chia hết n+1 

 Tiếp theo bạn làm hộ mk nhé

B; 4n-5 chia hết 2-3n

4n-5 chia hết 3n-2

3(4n-5) chia hết 3n-2

12n-15 chia hết 3n-2

12n-8-7 chia hết 3n-2

4(2n-2) -7 chia hết 3n-2

-7 chia hết 3n-2

7 chia hết 3n-2

Bạn làm nha

k mk nhé