K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

a)1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24 = 3(3n+8) 
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b) 
Từ (a) và (b) => Mâu thuẫn 
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

b)Tương tự thôi,Số nguyên tố dễ mà,bạn tự tính nhé

25 tháng 2 2017

a,Đặt: UC(9n+24,3n+4)=d

=> \(\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow}9n+24-3\left(3n+4\right)⋮d\Leftrightarrow12⋮d\)

=> d=1,2,3,6,12

Xét thấy: 3n+4 không chia hết cho 3 nên => d\(\ne\)3,6,12 => d=1, 2

Để 9n+24 và 3n+4 nguyên tố cùng nhau <=>  9n+24 lẻ <=> 9n lẻ hay n lẻ

Vậy n lẻ thì 2 số nguyên tố cùng nhau

Cách 2: 

Xét n chẵn: => cả 2 số đều chẵn => không nguyên tố cùng nhau

Xét n lẻ: có 9n+24=3(3n+8)

Mặt khác 3n+4 không chia hết cho 3 => xét: 3n+8-(3n+4)\(⋮\)d hay 4\(⋮\)d

Mà n lẻ nên 2 số đều lẻ

=> d=1

Vậy n lẻ thì 2 số nguyên tố cùng nhau

b, Đặt: d=UC(4n+3,2n+3)

=> \(\hept{\begin{cases}4n+3⋮d\\2n+3⋮d\end{cases}\Rightarrow}2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\)

Vậy d=1 hoặc 3

Để d=1<=> 4n+3 không chia hết cho 3 <=> n không chia hết cho 3

Vậy với n không chia hết cho 3 thì 2 số nguyên tố cùng nhau

14 tháng 12 2016

a, gọi ước chung lơn nhất của .... là d

4n+3 chia hết cho d

2n+ 3 chia hết cho d

=> 2(2n+3) chia hết cho d

=> 4n+5 chia hết cho d

=> (4n+5)-(4n+3) chia hết cho d

=> 2 chia hết cho d

=> d= 1,2

mà 2n+3 là số lẻ ( ko chia hết cho 2)

=> d= 1

vây ......

20 tháng 12 2020

sai đề bạn ơ

4 tháng 1 2018

a, n = 0

b, n = 0

c, n = 3

d, n = 2

4 tháng 1 2018

n=0;n=0;n=3;n=2

9 tháng 11 2023

a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau

    Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:

             \(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)

     ⇒  4n + 6 - (4n + 3) ⋮ d  ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d

     ⇒ d = 1; 3

Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì 

        2n + 3 không chia hết cho 3

        2n không chia hết cho 3

        n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)

       

              

11 tháng 7 2017

a) n = 0 

b) n = 0

c) n = 3

d) n = 2

Chúc bạn học tốt!

14 tháng 1 2021

\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)

\(4n+3⋮d\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)

Vay ta co dpcm

14 tháng 1 2021

c,Đặt  \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)

\(9n+24⋮d\)

\(3n+4\Rightarrow9n+12⋮d\)

Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)

Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau 

7 tháng 2 2015

a hỏi bài nha. Giang ơi có tú rồi còn chi nữa