Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bài đó chung 1 bài hay 2 câu khác nhau vậy
a)n+2 chia hết cho n-1
n-1 chia hết cho n-1
suy ra n+2 - n-1 chia hết cho n -1
suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 ={-1,-3,1,3}
b) 3n-5 chia hết cho n-2
3n-6 chia hết cho n-2
suy ra 3n-5 - 3n-6 chia hết cho n-2
suy ra 1 chia hết cho n-2
suy ra n-2 thuộc ước của 1 ={-1,1}
NHẤN MỎI TAY V~
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
n+2 chia hết cho n+1
=> n+1+1 chia hết cho n+1
Vì n+1 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 thuộc Ư(1)
n+1 | n |
1 | 0 |
-1 | -2 |
KL: n thuộc............................
3n-5 chia hết cho n-2
=> 3n-6+1 chia hết cho n-2
Vì 3n-6 chia hết cho n-2
=> 1 chia hết cho n-2
=> n-2 thuộc Ư(1)
n-2 | n |
1 | 3 |
-1 | 2 |
KL: n thuộc ...............................
a) Ta có: \(3n+5⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+8⋮n-1\)
\(\Rightarrow8⋮n-1\)
\(\Rightarrow n-1\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
Vậy:............
b) \(8-3n⋮n+3\)
\(\Rightarrow3n-8⋮n+3\)
\(\Rightarrow\hept{\begin{cases}3n-8⋮n+3\\n+3⋮n+3\end{cases}}\Rightarrow\hept{\begin{cases}3n-8⋮n+3\\3n+9⋮n+3\end{cases}}\)
\(\Rightarrow\left(3n+9\right)-\left(3n-8\right)⋮n+3\)
\(\Rightarrow17⋮n+3\)
\(\Rightarrow n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow n\in\left\{-20;-4;-2;14\right\}\)
Vậy:......................
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
(3n-5) chia hết cho (n-1)=> \(\frac{3n-5}{n-1}\)thuộc Z
Ta có : \(\frac{3n-5}{n-1}=\frac{3n-3-2}{n-1}=\frac{3\left(n-1\right)-2}{n-1}=3-\frac{2}{n-1}\)
=> để \(\frac{3n-5}{n-1}\)thuộc Z =>\(\frac{2}{n-1}\)thuộc Z
=> n-1 thuộc Ư(2)
Ư(2)={-2;-1;1;2}
Ta có bảng sau:
Vậy n thuộc{ -1;0;2;3}