Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)
Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )
Dấu "=" xảy ra <=> x=y
\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)
Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)
a, \(xy-x-y=2\)
\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Ta có bảng sau:
bạn xét các trường hợp ra nhé!
b, \(xy-3x+5y=22\)
\(\Leftrightarrow x\left(y-3\right)+5y-15=7\)
\(\Leftrightarrow x\left(y-3\right)+5\left(y-3\right)=7\)
\(\Leftrightarrow\left(x+5\right)\left(y-3\right)=7\)
Ta có bảng sau:
.............
c, d tương tự
Câu a, b mk làm bài bạn đăng rồi giờ mk làm câu c
c) \(3xy-x-y=1\)
\(\left(3y-1\right)x=1+y\)
\(\Rightarrow x=\dfrac{\left(1+y\right)}{\left(3y-1\right)}\)
Với mọi y > 0 ta có \(0< 1+y< 3y-1\)
\(\Rightarrow0< \dfrac{\left(1+y\right)}{\left(3y-1\right)}< 1\)
Phương trình này vô nghiệm với y > 0 và y \(\in\) Z
Với y < 0, y \(\in\) Z ta có: \(0\ge y+1>3y+1\)
\(\Rightarrow0< \dfrac{y+1}{3y+1}\)
\(\Rightarrow y=-1\Rightarrow x=0\) là N0
Với y = 0 ta có x = 1
Vậy nghiệm phương trình là \(\left(x;y\right)=\left(0;-1\right);\left(1;0\right)\)
a) \(xy-x-y=2\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Ta có :
\(x-1=1;y-1=3\Rightarrow x=2;y=4\)
\(x-1=3;y-1=1\Rightarrow x=4;y=2\)
\(x-1=-1;y-1=-3\Rightarrow x=0;y=-2\)
\(x-1=-3;y-1=-1\Rightarrow x=-2;y=0\)
b) \(xy-3x+5y=22\)
\(\Rightarrow x\left(y-3\right)+5y=22\)
\(\Rightarrow x\left(y-3\right)+5\left(y-3\right)+15=22\)
\(\Rightarrow x\left(y-3\right)+5\left(y-3\right)=7\)
\(\Rightarrow\left(y-3\right)\left(x+5\right)=7\)
Ta có
\(y-3=1;x+5=7\Rightarrow y=4;x=2\)
\(y-3=7;x+5=1\Rightarrow y=10;x=-4\)
\(y-3=-1;x+5=-7\Rightarrow y=2;x=-12\)
\(y-3=-7;x+5=-1\Rightarrow y=-4;x=-6\)
P/s: ( Còn 2 bài đó làm tương tự )
cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath
a, =(x+2)*(y+2*x)
= (88+2)(y+2.-76)
= 90*y-6660
b, = (x-7)*(y+x)
\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)
= 3/5 . 10
=6
k cho tớ nha :))))))
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)