Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh: \(x^2+y^2+z^2\ge xy+yz+zx\)
Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Áp dụng BĐT Svacxo, ta có:
\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)
\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)
Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)
Vậy \(C_{min}=\frac{9}{4}\)
Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)
Chúc bạn học tốt !!!
Nhìn qua thấy bậc của bđt là không đồng bậc nên hơi căng đấy...
Chú ý: \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}\Rightarrow xyz=\frac{x+y+z}{2019}\)
\(LHS=\Sigma_{cyc}\frac{\sqrt{2019x^2+1}+1}{x}=\Sigma_{cyc}\frac{\sqrt{\frac{x}{y}+\frac{x^2}{yz}+\frac{x}{z}+1}+1}{x}\)( thay \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\))
\(=\Sigma_{cyc}\frac{\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}+1}{x}=\Sigma_{cyc}\left[\sqrt{\frac{\left(\frac{x}{y}+1\right)}{x}.\frac{\left(\frac{x}{z}+1\right)}{x}}+\frac{1}{x}\right]\)
\(=\Sigma_{cyc}\sqrt{\left(\frac{1}{y}+\frac{1}{x}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{2}\left[4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{3\left(xy+yz+zx\right)}{\frac{\left(x+y+z\right)}{2019}}=\frac{6057\left(xy+yz+zx\right)}{x+y+z}\)
\(\le\frac{6057.\frac{\left(x+y+z\right)^2}{3}}{x+y+z}=2019\left(x+y+z\right)\)(đpcm)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{3}{2019}}\)
P/s: Check hộ t phát:3
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì bài toán thành
Cho: \(ab+bc+ca=2019\)
Chứng minh:
\(\sqrt{2019+a^2}+\sqrt{2019+b^2}+\sqrt{2019+c^2}+\left(a+b+c\right)\le2019\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có:
\(VT=\sqrt{ab+bc+ca+a^2}+\sqrt{ab+bc+ca+b^2}+\sqrt{ab+bc+ca+c^2}+\left(a+b+c\right)\)
\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}+\left(a+b+c\right)\)
\(\le3\left(a+b+c\right)\)
\(VP=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\)
\(\ge3\left(a+b+c\right)\)
Tới đây bí :(
\(\frac{x^2}{y}+x=2\\\)và\(\frac{y^2}{x}+y=\frac{1}{2}\)
Xét 2 biểu thức trên ta có
\(\left(\frac{x^2}{y}+x\right).\left(\frac{y^2}{x}+y\right)=\frac{1}{2}.2\)
\(\frac{x^2}{y}.\frac{y^2}{x}+\frac{x^2}{y}.y+x.\frac{y^2}{x}+x.y=1\)
\(xy+x^2+y^2+xy=1\\\)
\(x^2+2xy+y^2=1\\\)
\(\left(x+y\right)^2=1\)
\(\hept{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)
\(\hept{\begin{cases}x=-y\\x=-1-y\end{cases}}\)
Từ \(3x^2y=y^2+2\left(4\right)\)\(\Rightarrow y^2=3x^2y-2\left(1\right)\)
\(3xy^2=x^2+2\left(2\right)\Rightarrow x^2=3xy^2-2\left(3\right)\)
Lấy (1) thay vào (2) ta đc:
\(3x.\left(3x^2y-2\right)=x^2+2\)
\(\Leftrightarrow9x^3y-6x-x^2-2=0\)
Lấy (3) thay vào (4) ta đc:
\(3y\left(3xy^2-2\right)=y^2+2\)
\(\Leftrightarrow9xy^3-6y-y^2-2=0\)
Đến đây sao khó hiểu thật
Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)
\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)
\(=1+\frac{2}{xy}\)
Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)