K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)

\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)

Vậy minA = 32 khi x = 7.

b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)

minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

9 tháng 7 2017

\(A=x^2-10x+25+2x^2-4x+2+11=3x^2-14x+38=3\left(x^2-\frac{14}{3}x+\frac{38}{3}\right)\)

\(=3\left(x^2-2\cdot\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}+\frac{38}{3}\right)=3\left(x-\frac{7}{3}\right)^2+\frac{65}{3}\ge\frac{65}{3}\)

Vậy \(Min_A=\frac{65}{3}\) khi x=7/3

(kiểm tra lại nhé, hôm nay tớ làm bài dễ bị sai lắm)

15 tháng 9 2019

A=((x-3)+(x+1))^2>=0

A=(x-2)^2>=0

Dấu bằng xảy ra khi

(x-2)^2=0

x-2=0

x=0+2

x=2

18 tháng 8 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3

16 tháng 7 2015

( x - 3)( x - 5) + 4 = x^2 - 3x - 5x + 15 + 4 = x^2 - 8x + 19 = x^2 -8x + 16 + 3 = (x - 4)^2 + 3 

Vì( x + 4)^2 > = 0 với mọi x => ( x + 4)^2 + 3 lớn hơn bằng 3 

VẬy GTNN của bt là 3 khi x + 4 = 0 => x = - 4

23 tháng 8 2021

Ta có : A = 9x2 - 6x + 2 

= 9x2 - 6x + 1 + 1 = (3x - 1)2 + 1 \(\ge\)

=> Min A = 1

Dấu "=" xảy ra <=> 3x - 1 = 0 

<=> x = 1/3

Vậy Min A = 1 <=> x = 1/3

b) Ta có 2B = 4x2 + 4x + 2 

= 4x2 + 4x + 1 + 1 

= (2x + 1)2 + 1 \(\ge\)1

=> B \(\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> 2x + 1 = 0 

<=> x = -1/2

Vậy Min B = 1/2 <=> x = -1/2

c) C = (2x - 1)2 + (x - 2)2 

= 5x2 - 8x + 5

=> 5C = 25x2 - 40x + 25 

 = 25x2 - 40x + 16 + 9 

= (5x - 4)2 + 9 \(\ge9\)

=> \(C\ge\frac{9}{5}\)

Dấu "=" xảy ra <=> 5x - 4 = 0 

<=> x = 0,8

Vậy Min C = 9/5 <=> x = 0,8

d) D = 3x2 + 5x = \(3\left(x^2+\frac{5}{3}x\right)=3\left(x^2+2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)=3\left(x+\frac{5}{6}\right)^2-\frac{25}{12}\ge-\frac{25}{12}\)

=> \(D\ge-\frac{25}{12}\)

Dấu "=" xảy ra <=> x + 5/6 = 0 

<=> x = -5/6

Vậy Min D = -25/12 <=> x = -5/6e) E = (x -2)(x - 3)(x + 5)x

= (x2 - 5x + 6)(x2 + 5x)

4 tháng 4 2015

1) A = 3 - 4x2 - 4x  = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4 

Vì  - (2x+1)2 \(\le\)0 nên A =  - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2

b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4

=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3

2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)\(\frac{1}{4}\)

vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2

b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0

ta có:  |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2

vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x <  5/3

\(x^2+2x+5\)

\(=x^2+2.x.1+1+4\)

\(=\left(x+1\right)^2+4\ge4\)

Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)