Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) B= 5x2 -10x+3-2
B = (5x2 - 2.5.1 . 12)-2
B = (5x-1)2-2
ta có :
(5x-1)2 > 0 với mọi x thuộc R
(5x-1)2 -2 < -2
vậy B < -2
dấu = xảy ra <=> x = 1/5
mai tui lm nốt choa
a)
\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)
\(A\ge-2\forall x\in R\)
Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy Amin =-2 tại x=1/2
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
Lời giải:
a)
\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)
\(=(2x+1)(2x-3)+4\)
Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)
Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$
b)
\(B=5x^2-10x+3=5(x^2-2x+1)-2\)
\(=5(x-1)^2-2\)
Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)
Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$
c)
\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)
\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)
Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)
Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)
d)
\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)
\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)
Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)
Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$
a) (x-3)(x+3)-(x-1)^2=0
=> (x^2-9)-(x^2-2x+1)=0
=>x^2-9-x^2+2x-1=0
=>(x^2-x^2)-9-1+2x=0
=>-10+2x=0
=>-2.(-5-x)=0
=>-5-x=0
=>-x=0+5
=>x=-5
vậy x=-5
b) x^3-3x^2+3x-1=0
=>(x-1)^3=0
=>x-1=0
=>x=0+1
=>x=1
vậy x=1
c) 4x^2-28x=0
=>4x.(x-7)=0
=> 2 TH
* 4x=0=>x=0
*x-7=0=>x=0+7=>x=7
vậy x=0 hoặc x=7
Bài 1.
A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x
Dấu "=" xảy ra khi x = 1/4
=> MinA = 31/8 <=> x = 1/4
Bài 2.
A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxA = 17/4 <=> x = 3/2
B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x
Dấu "=" xảy ra khi x = -1/6
=> MinB = -61/12 <=> x = -1/6
C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MinC = -89/16 <=> x= -3/4
a.=\(\frac{7x+2}{3xy^2}.\frac{x^2y}{14x+4}\)
=\(\frac{7x+2}{3y}.\frac{x^2y}{2\left(7x+2\right)}\)
=\(\frac{1}{3y}.\frac{x}{2}\)
=\(\frac{x}{6y}\)
b.=\(\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
=\(\frac{2}{3x-1}.\frac{-15x+5}{3y^2}\)
=\(\frac{2}{3x-1}.\frac{-5\left(3x-1\right)}{3y^2}\)
=\(\frac{-10}{3y^2}\)
c.=\(\frac{3\left(x^3+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3\left(x+1\right).\left(x^2-x+1\right)}{x-1}.\frac{1}{x^2-x+1}\)
=\(\frac{3x+3}{x-1}\)
d.=\(\frac{4\left(x+3\right)}{.\left(3x-1\right)}.\frac{1-3x}{x^2+3x}\)
=\(\frac{4\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x\left(x+3\right)}\)
=\(\frac{-4}{x^2}\)
e.=\(\frac{2\left(2x+3y\right)}{x-1}.\frac{1-x^3}{4x^2+12xy+9y^2}\)
=\(2.\frac{-\left(1+x+x^2\right)}{2x+3y}\)
=\(-\frac{2x^2+2x+2}{2x+3y}\)
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3